Limits...
Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures.

Vaidya S, Thaplyal P, Ganguli AK - Nanoscale Res Lett (2011)

Bottom Line: The high density of functional groups can be used for extraction of elements present in trace amounts.These functionalized core-shell nanostructures were characterized using TEM, IR, and zeta potential studies.The amino-functionalized core-shell nanostructures were used for the immobilization of glucose and L-methionine and were characterized by zeta potential studies.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. ashok@chemistry.iitd.ernet.in.

ABSTRACT
Core-shell nanostructures of Mn2O3@SiO2, Mn2O3@amino-functionalized silica, Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica were synthesized using the hydrolysis of the respective organosilane precursor over Mn2O3 nanoparticles dispersed using colloidal solutions of Tergitol and cyclohexane. The synthetic methodology used is an improvement over the commonly used post-grafting or co-condensation method as it ensures a high density of functional groups over the core-shell nanostructures. The high density of functional groups can be useful in immobilization of biomolecules and drugs and thus can be used in targeted drug delivery. The high density of functional groups can be used for extraction of elements present in trace amounts. These functionalized core-shell nanostructures were characterized using TEM, IR, and zeta potential studies. The zeta potential study shows that the hydrolysis of organosilane to form the shell results in more number of functional groups on it as compared to the shell formed using post-grafting method. The amino-functionalized core-shell nanostructures were used for the immobilization of glucose and L-methionine and were characterized by zeta potential studies.

No MeSH data available.


Zeta potential vs. pH plot. Zeta potential versus pH plot for bare Mn2O3, Mn2O3@SiO2, Mn2O3@amino-functionalized silica (with TEOS), Mn2O3@amino-functionalized silica (without TEOS), Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica core-shell nanostructures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211221&req=5

Figure 3: Zeta potential vs. pH plot. Zeta potential versus pH plot for bare Mn2O3, Mn2O3@SiO2, Mn2O3@amino-functionalized silica (with TEOS), Mn2O3@amino-functionalized silica (without TEOS), Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica core-shell nanostructures.

Mentions: Zeta potential studies for uncoated and coated Mn2O3 nanoparticles were carried out with varying pH (Figure 3). Increase in the negative zeta potential values were observed for the coated particles compared to the uncoated particles, which suggests a uniform coating of silica over Mn2O3 nanoparticles. The negative surface charge of silica is expected due to the presence of hydroxyl groups on the surface of silica.


Enhanced functionalization of Mn2O3@SiO2 core-shell nanostructures.

Vaidya S, Thaplyal P, Ganguli AK - Nanoscale Res Lett (2011)

Zeta potential vs. pH plot. Zeta potential versus pH plot for bare Mn2O3, Mn2O3@SiO2, Mn2O3@amino-functionalized silica (with TEOS), Mn2O3@amino-functionalized silica (without TEOS), Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica core-shell nanostructures.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211221&req=5

Figure 3: Zeta potential vs. pH plot. Zeta potential versus pH plot for bare Mn2O3, Mn2O3@SiO2, Mn2O3@amino-functionalized silica (with TEOS), Mn2O3@amino-functionalized silica (without TEOS), Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica core-shell nanostructures.
Mentions: Zeta potential studies for uncoated and coated Mn2O3 nanoparticles were carried out with varying pH (Figure 3). Increase in the negative zeta potential values were observed for the coated particles compared to the uncoated particles, which suggests a uniform coating of silica over Mn2O3 nanoparticles. The negative surface charge of silica is expected due to the presence of hydroxyl groups on the surface of silica.

Bottom Line: The high density of functional groups can be used for extraction of elements present in trace amounts.These functionalized core-shell nanostructures were characterized using TEM, IR, and zeta potential studies.The amino-functionalized core-shell nanostructures were used for the immobilization of glucose and L-methionine and were characterized by zeta potential studies.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. ashok@chemistry.iitd.ernet.in.

ABSTRACT
Core-shell nanostructures of Mn2O3@SiO2, Mn2O3@amino-functionalized silica, Mn2O3@vinyl-functionalized silica, and Mn2O3@allyl-functionalized silica were synthesized using the hydrolysis of the respective organosilane precursor over Mn2O3 nanoparticles dispersed using colloidal solutions of Tergitol and cyclohexane. The synthetic methodology used is an improvement over the commonly used post-grafting or co-condensation method as it ensures a high density of functional groups over the core-shell nanostructures. The high density of functional groups can be useful in immobilization of biomolecules and drugs and thus can be used in targeted drug delivery. The high density of functional groups can be used for extraction of elements present in trace amounts. These functionalized core-shell nanostructures were characterized using TEM, IR, and zeta potential studies. The zeta potential study shows that the hydrolysis of organosilane to form the shell results in more number of functional groups on it as compared to the shell formed using post-grafting method. The amino-functionalized core-shell nanostructures were used for the immobilization of glucose and L-methionine and were characterized by zeta potential studies.

No MeSH data available.