Limits...
Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters.

Wilson PR, Roschuk T, Dunn K, Normand EN, Chelomentsev E, Zalloum OH, Wojcik J, Mascher P - Nanoscale Res Lett (2011)

Bottom Line: Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure.The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity.The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada. wilsonpr@mcmaster.ca.

ABSTRACT
Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.

No MeSH data available.


Related in: MedlinePlus

FLY-XANES spectra at the Si L3,2-edge for a high excess silicon content PECVD film (Siex = 6%) annealed in a quartz tube furnace under N2 ambient gas. The offset spectra are labelled underneath.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211220&req=5

Figure 7: FLY-XANES spectra at the Si L3,2-edge for a high excess silicon content PECVD film (Siex = 6%) annealed in a quartz tube furnace under N2 ambient gas. The offset spectra are labelled underneath.

Mentions: Analysis at the silicon L3,2-edge is hindered by substantial distortion of the FLY signal due to either self-absorption effects, which intensify as the film density increases with higher annealing temperatures, or augmentation of X-ray scattering resulting from voids formed within the film [31]. Preliminary results from positron annihilation spectroscopy experiments suggest that void formation is at least partially responsible for the distortion observed, but it remains to be established as a full investigation of this effect is still underway. The distortion is most prominent in high excess silicon content films deposited by the PECVD system, although it is observed to some degree in all of the SRSN films measured at the Si L3,2-edge. An example of this effect is shown in Figure 7. As the annealing temperature is increased, a dip grows in the FLY at energies between the Si-Si absorption edge and the higher energy side of the Si-N resonance peak. A full account of this effect is a non-trivial challenge yet to be corrected for this data, which, however, is certainly necessary to gain accurate and specific information on the changes in the silicon nitride host matrix.


Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters.

Wilson PR, Roschuk T, Dunn K, Normand EN, Chelomentsev E, Zalloum OH, Wojcik J, Mascher P - Nanoscale Res Lett (2011)

FLY-XANES spectra at the Si L3,2-edge for a high excess silicon content PECVD film (Siex = 6%) annealed in a quartz tube furnace under N2 ambient gas. The offset spectra are labelled underneath.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211220&req=5

Figure 7: FLY-XANES spectra at the Si L3,2-edge for a high excess silicon content PECVD film (Siex = 6%) annealed in a quartz tube furnace under N2 ambient gas. The offset spectra are labelled underneath.
Mentions: Analysis at the silicon L3,2-edge is hindered by substantial distortion of the FLY signal due to either self-absorption effects, which intensify as the film density increases with higher annealing temperatures, or augmentation of X-ray scattering resulting from voids formed within the film [31]. Preliminary results from positron annihilation spectroscopy experiments suggest that void formation is at least partially responsible for the distortion observed, but it remains to be established as a full investigation of this effect is still underway. The distortion is most prominent in high excess silicon content films deposited by the PECVD system, although it is observed to some degree in all of the SRSN films measured at the Si L3,2-edge. An example of this effect is shown in Figure 7. As the annealing temperature is increased, a dip grows in the FLY at energies between the Si-Si absorption edge and the higher energy side of the Si-N resonance peak. A full account of this effect is a non-trivial challenge yet to be corrected for this data, which, however, is certainly necessary to gain accurate and specific information on the changes in the silicon nitride host matrix.

Bottom Line: Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure.The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity.The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada. wilsonpr@mcmaster.ca.

ABSTRACT
Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.

No MeSH data available.


Related in: MedlinePlus