Limits...
Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters.

Wilson PR, Roschuk T, Dunn K, Normand EN, Chelomentsev E, Zalloum OH, Wojcik J, Mascher P - Nanoscale Res Lett (2011)

Bottom Line: Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure.The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity.The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada. wilsonpr@mcmaster.ca.

ABSTRACT
Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.

No MeSH data available.


Related in: MedlinePlus

TEY-XANES spectra at the Si K-edge for the Siex = 2% film annealed for different times at 800°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211220&req=5

Figure 13: TEY-XANES spectra at the Si K-edge for the Siex = 2% film annealed for different times at 800°C.

Mentions: The occurrence of Ostwald ripening and silicon nitride structural reordering are evidenced by the Si K-edge XANES spectra for the 2% excess Si content film shown in Figure 13. These spectra exhibit a large increase in the Si-Si resonance after just 2 s of annealing but no noticeable change as the annealing time is extended, suggesting that further increases in Si-nc size are due to larger nanoclusters growing at the expense of smaller ones. At the same time, large changes were observed in the Si-N resonance, which include a significant increase between the 10 and 60 s anneals.


Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters.

Wilson PR, Roschuk T, Dunn K, Normand EN, Chelomentsev E, Zalloum OH, Wojcik J, Mascher P - Nanoscale Res Lett (2011)

TEY-XANES spectra at the Si K-edge for the Siex = 2% film annealed for different times at 800°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211220&req=5

Figure 13: TEY-XANES spectra at the Si K-edge for the Siex = 2% film annealed for different times at 800°C.
Mentions: The occurrence of Ostwald ripening and silicon nitride structural reordering are evidenced by the Si K-edge XANES spectra for the 2% excess Si content film shown in Figure 13. These spectra exhibit a large increase in the Si-Si resonance after just 2 s of annealing but no noticeable change as the annealing time is extended, suggesting that further increases in Si-nc size are due to larger nanoclusters growing at the expense of smaller ones. At the same time, large changes were observed in the Si-N resonance, which include a significant increase between the 10 and 60 s anneals.

Bottom Line: Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure.The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity.The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada. wilsonpr@mcmaster.ca.

ABSTRACT
Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.

No MeSH data available.


Related in: MedlinePlus