Limits...
Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters.

Wilson PR, Roschuk T, Dunn K, Normand EN, Chelomentsev E, Zalloum OH, Wojcik J, Mascher P - Nanoscale Res Lett (2011)

Bottom Line: Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure.The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity.The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada. wilsonpr@mcmaster.ca.

ABSTRACT
Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.

No MeSH data available.


Related in: MedlinePlus

FLY-XANES spectra at the Si L3,2-edge for a film with Siex = 3% annealed for different times at 600°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211220&req=5

Figure 11: FLY-XANES spectra at the Si L3,2-edge for a film with Siex = 3% annealed for different times at 600°C.

Mentions: XANES measurements provided insight on the structural ordering of the Si-ncs and the silicon nitride host matrix. Several spectra measured at the Si K- and L3,2-edges are shown in Figures 10 and 11, respectively. At the Si K-edge, a gradual increase in Si-Si bonding was observed in a 3% excess Si content film with increasing annealing time corresponding to larger Si-ncs and increased phase separation. Also, there was a large increase in the Si-Si bonding resonance over the AD spectrum even at very short annealing times. Large restructuring of the silicon nitride host matrix was also observed on the same time scale as evidenced by the significant changes in the Si-N bonding resonance over the course of annealing. Similar changes were obtained at the Si L3,2-edge for a film with 2% excess Si content, where the Si-Si absorption edge becomes very large after the 60 s anneal and significant changes in both the peak energy and the magnitude of the Si-N resonance are observed over the timescale studied. Combined with the large changes measured in the PL spectra for annealing times on the order of seconds, these results suggest that Si-ncs form much more rapidly than has been conventionally believed and it is likely the result of a fast transient diffusion mechanism for excess silicon in a silicon nitride film.


Effect of thermal treatment on the growth, structure and luminescence of nitride-passivated silicon nanoclusters.

Wilson PR, Roschuk T, Dunn K, Normand EN, Chelomentsev E, Zalloum OH, Wojcik J, Mascher P - Nanoscale Res Lett (2011)

FLY-XANES spectra at the Si L3,2-edge for a film with Siex = 3% annealed for different times at 600°C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211220&req=5

Figure 11: FLY-XANES spectra at the Si L3,2-edge for a film with Siex = 3% annealed for different times at 600°C.
Mentions: XANES measurements provided insight on the structural ordering of the Si-ncs and the silicon nitride host matrix. Several spectra measured at the Si K- and L3,2-edges are shown in Figures 10 and 11, respectively. At the Si K-edge, a gradual increase in Si-Si bonding was observed in a 3% excess Si content film with increasing annealing time corresponding to larger Si-ncs and increased phase separation. Also, there was a large increase in the Si-Si bonding resonance over the AD spectrum even at very short annealing times. Large restructuring of the silicon nitride host matrix was also observed on the same time scale as evidenced by the significant changes in the Si-N bonding resonance over the course of annealing. Similar changes were obtained at the Si L3,2-edge for a film with 2% excess Si content, where the Si-Si absorption edge becomes very large after the 60 s anneal and significant changes in both the peak energy and the magnitude of the Si-N resonance are observed over the timescale studied. Combined with the large changes measured in the PL spectra for annealing times on the order of seconds, these results suggest that Si-ncs form much more rapidly than has been conventionally believed and it is likely the result of a fast transient diffusion mechanism for excess silicon in a silicon nitride film.

Bottom Line: Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure.The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity.The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada. wilsonpr@mcmaster.ca.

ABSTRACT
Silicon nanoclusters (Si-ncs) embedded in silicon nitride films have been studied to determine the effects that deposition and processing parameters have on their growth, luminescent properties, and electronic structure. Luminescence was observed from Si-ncs formed in silicon-rich silicon nitride films with a broad range of compositions and grown using three different types of chemical vapour deposition systems. Photoluminescence (PL) experiments revealed broad, tunable emissions with peaks ranging from the near-infrared across the full visible spectrum. The emission energy was highly dependent on the film composition and changed only slightly with annealing temperature and time, which primarily affected the emission intensity. The PL spectra from films annealed for duration of times ranging from 2 s to 2 h at 600 and 800°C indicated a fast initial formation and growth of nanoclusters in the first few seconds of annealing followed by a slow, but steady growth as annealing time was further increased. X-ray absorption near edge structure at the Si K- and L3,2-edges exhibited composition-dependent phase separation and structural re-ordering of the Si-ncs and silicon nitride host matrix under different post-deposition annealing conditions and generally supported the trends observed in the PL spectra.

No MeSH data available.


Related in: MedlinePlus