Limits...
Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography.

Roussel M, Talbot E, Gourbilleau F, Pareige P - Nanoscale Res Lett (2011)

Bottom Line: Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques.An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described.This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C.

View Article: PubMed Central - HTML - PubMed

Affiliation: Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Av, de l'université, BP 12, 76801 Saint Etienne du Rouvray, France. manuel.roussel@etu.univ-rouen.fr.

ABSTRACT
Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C.

No MeSH data available.


FIB-SEM procedure for APT sample preparation. a. Extraction of a silicon post using the Lift-out method. The sample has been milled with the help of a FIB in order to extract a strip of material. b. The strip is shaped in a post and welded onto a steel needle (platinum weld). c., d. and e. Successive annular milling steps permit to obtain a very sharp tip which curvature radius does not exceed 50nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211216&req=5

Figure 1: FIB-SEM procedure for APT sample preparation. a. Extraction of a silicon post using the Lift-out method. The sample has been milled with the help of a FIB in order to extract a strip of material. b. The strip is shaped in a post and welded onto a steel needle (platinum weld). c., d. and e. Successive annular milling steps permit to obtain a very sharp tip which curvature radius does not exceed 50nm.

Mentions: The three-step method which is commonly used for obtaining a tip from the chunk state is illustrated Figure 1. The first step consists in etching a thin lamella of 2-4-μm-thickness in the sample (Figure 1a). Successive milling operations are operated on the chunk to extract posts [29]. The second step consists in micromanipulating and mounting extracted posts on the top of a stainless steel needle using a Pt weld (Figure 1b). During the final step, the post is submitted to an annular milling. The post is located along the axis of the ion beam which owing to annular motion successively cut concentric circles of the sample. By reducing the diameter of these circles, the post is thickened into a sharp tip with a curvature radius lower than 50 nm [30] (Figure 1c,d,e). To prevent ion beam damage and Ga implantation in the interest SRSO/SiO2 layers, the final milling is performed at a low accelerating voltage (2 kV). As observed in previous studies, this process ensures Ga-free tips [31,32].


Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography.

Roussel M, Talbot E, Gourbilleau F, Pareige P - Nanoscale Res Lett (2011)

FIB-SEM procedure for APT sample preparation. a. Extraction of a silicon post using the Lift-out method. The sample has been milled with the help of a FIB in order to extract a strip of material. b. The strip is shaped in a post and welded onto a steel needle (platinum weld). c., d. and e. Successive annular milling steps permit to obtain a very sharp tip which curvature radius does not exceed 50nm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211216&req=5

Figure 1: FIB-SEM procedure for APT sample preparation. a. Extraction of a silicon post using the Lift-out method. The sample has been milled with the help of a FIB in order to extract a strip of material. b. The strip is shaped in a post and welded onto a steel needle (platinum weld). c., d. and e. Successive annular milling steps permit to obtain a very sharp tip which curvature radius does not exceed 50nm.
Mentions: The three-step method which is commonly used for obtaining a tip from the chunk state is illustrated Figure 1. The first step consists in etching a thin lamella of 2-4-μm-thickness in the sample (Figure 1a). Successive milling operations are operated on the chunk to extract posts [29]. The second step consists in micromanipulating and mounting extracted posts on the top of a stainless steel needle using a Pt weld (Figure 1b). During the final step, the post is submitted to an annular milling. The post is located along the axis of the ion beam which owing to annular motion successively cut concentric circles of the sample. By reducing the diameter of these circles, the post is thickened into a sharp tip with a curvature radius lower than 50 nm [30] (Figure 1c,d,e). To prevent ion beam damage and Ga implantation in the interest SRSO/SiO2 layers, the final milling is performed at a low accelerating voltage (2 kV). As observed in previous studies, this process ensures Ga-free tips [31,32].

Bottom Line: Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques.An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described.This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C.

View Article: PubMed Central - HTML - PubMed

Affiliation: Groupe de Physique des Matériaux, Université et INSA de Rouen, UMR CNRS 6634, Av, de l'université, BP 12, 76801 Saint Etienne du Rouvray, France. manuel.roussel@etu.univ-rouen.fr.

ABSTRACT
Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C.

No MeSH data available.