Limits...
Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films.

Debieu O, Cardin J, Portier X, Gourbilleau F - Nanoscale Res Lett (2011)

Bottom Line: Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np.Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD.It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

View Article: PubMed Central - HTML - PubMed

Affiliation: CIMAP, UMR CNRS/CEA/ENSICAEN/UCBN, Ensicaen 6 Bd Maréchal Juin, 14050 Caen Cedex 4, France. fabrice.gourbilleau@ensicaen.fr.

ABSTRACT
In this article, the microstructure and photoluminescence (PL) properties of Nd-doped silicon-rich silicon oxide (SRSO) are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR) spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np) as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD) measurements. Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np. Upon increasing the Nd concentration from 0.08 to 4.9 at.%, our samples revealed a progressive quenching of the Nd3+ PL which can be correlated with the concomitant increase of disorder within the host matrix as shown by FTIR experiments. Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD. It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

No MeSH data available.


Related in: MedlinePlus

HRTEM images of the highest (a) and lowest (b) Nd-doped samples annealed at 1100 °C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211213&req=5

Figure 5: HRTEM images of the highest (a) and lowest (b) Nd-doped samples annealed at 1100 °C.

Mentions: Figure 5 shows the HRTEM images of the two latter samples investigated by XRD after annealing at 1100 °C. In the image of the sample with the highest Nd concentration of 4.9 at.% (Figure 5a), one can recognize small Si nanocrystals because of the lattice fringes corresponding to the Si crystalline feature, while no crystalline structure was observed in the images of the film containing the lowest Nd concentration of 0.08 at.% (Figure 5b). These two images are in accordance with the XRD results (see Figure 4). However, one cannot exclude that the lowest Nd-doped sample could small contain amorphous Si-np.


Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films.

Debieu O, Cardin J, Portier X, Gourbilleau F - Nanoscale Res Lett (2011)

HRTEM images of the highest (a) and lowest (b) Nd-doped samples annealed at 1100 °C.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211213&req=5

Figure 5: HRTEM images of the highest (a) and lowest (b) Nd-doped samples annealed at 1100 °C.
Mentions: Figure 5 shows the HRTEM images of the two latter samples investigated by XRD after annealing at 1100 °C. In the image of the sample with the highest Nd concentration of 4.9 at.% (Figure 5a), one can recognize small Si nanocrystals because of the lattice fringes corresponding to the Si crystalline feature, while no crystalline structure was observed in the images of the film containing the lowest Nd concentration of 0.08 at.% (Figure 5b). These two images are in accordance with the XRD results (see Figure 4). However, one cannot exclude that the lowest Nd-doped sample could small contain amorphous Si-np.

Bottom Line: Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np.Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD.It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

View Article: PubMed Central - HTML - PubMed

Affiliation: CIMAP, UMR CNRS/CEA/ENSICAEN/UCBN, Ensicaen 6 Bd Maréchal Juin, 14050 Caen Cedex 4, France. fabrice.gourbilleau@ensicaen.fr.

ABSTRACT
In this article, the microstructure and photoluminescence (PL) properties of Nd-doped silicon-rich silicon oxide (SRSO) are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR) spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np) as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD) measurements. Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np. Upon increasing the Nd concentration from 0.08 to 4.9 at.%, our samples revealed a progressive quenching of the Nd3+ PL which can be correlated with the concomitant increase of disorder within the host matrix as shown by FTIR experiments. Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD. It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

No MeSH data available.


Related in: MedlinePlus