Limits...
Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films.

Debieu O, Cardin J, Portier X, Gourbilleau F - Nanoscale Res Lett (2011)

Bottom Line: Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np.Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD.It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

View Article: PubMed Central - HTML - PubMed

Affiliation: CIMAP, UMR CNRS/CEA/ENSICAEN/UCBN, Ensicaen 6 Bd Maréchal Juin, 14050 Caen Cedex 4, France. fabrice.gourbilleau@ensicaen.fr.

ABSTRACT
In this article, the microstructure and photoluminescence (PL) properties of Nd-doped silicon-rich silicon oxide (SRSO) are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR) spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np) as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD) measurements. Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np. Upon increasing the Nd concentration from 0.08 to 4.9 at.%, our samples revealed a progressive quenching of the Nd3+ PL which can be correlated with the concomitant increase of disorder within the host matrix as shown by FTIR experiments. Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD. It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

No MeSH data available.


Related in: MedlinePlus

Evolution of the FTIR spectra as a function of the Nd concentration.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211213&req=5

Figure 3: Evolution of the FTIR spectra as a function of the Nd concentration.

Mentions: Figure 3 presents the evolution of the FTIR spectra of samples annealed at 1100 °C as a function of the Nd concentration. One can observe that the LO3 band intensity, which is constant at low Nd concentrations of 0.08 and 0.27 at.%, significantly decreased while the Nd content was increased from 1.68 to 4.9 at.%. This evolution contrasts with the one of the TO4-LO4 pair modes. Indeed, the TO4-LO4 intensity remains constant at low Nd concentrations of 0.08 and 0.27 at.%, and then, it progressively increases with increasing Nd content. This demonstrates that the incorporation of Nd in the thin films generates disorder in the host SiO2 matrix.


Effect of the Nd content on the structural and photoluminescence properties of silicon-rich silicon dioxide thin films.

Debieu O, Cardin J, Portier X, Gourbilleau F - Nanoscale Res Lett (2011)

Evolution of the FTIR spectra as a function of the Nd concentration.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211213&req=5

Figure 3: Evolution of the FTIR spectra as a function of the Nd concentration.
Mentions: Figure 3 presents the evolution of the FTIR spectra of samples annealed at 1100 °C as a function of the Nd concentration. One can observe that the LO3 band intensity, which is constant at low Nd concentrations of 0.08 and 0.27 at.%, significantly decreased while the Nd content was increased from 1.68 to 4.9 at.%. This evolution contrasts with the one of the TO4-LO4 pair modes. Indeed, the TO4-LO4 intensity remains constant at low Nd concentrations of 0.08 and 0.27 at.%, and then, it progressively increases with increasing Nd content. This demonstrates that the incorporation of Nd in the thin films generates disorder in the host SiO2 matrix.

Bottom Line: Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np.Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD.It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

View Article: PubMed Central - HTML - PubMed

Affiliation: CIMAP, UMR CNRS/CEA/ENSICAEN/UCBN, Ensicaen 6 Bd Maréchal Juin, 14050 Caen Cedex 4, France. fabrice.gourbilleau@ensicaen.fr.

ABSTRACT
In this article, the microstructure and photoluminescence (PL) properties of Nd-doped silicon-rich silicon oxide (SRSO) are reported as a function of the annealing temperature and the Nd concentration. The thin films, which were grown on Si substrates by reactive magnetron co-sputtering, contain the same Si excess as determined by Rutherford backscattering spectrometry. Fourier transform infrared (FTIR) spectra show that a phase separation occurs during the annealing because of the condensation of the Si excess resulting in the formation of silicon nanoparticles (Si-np) as detected by high-resolution transmission electron microscopy and X-ray diffraction (XRD) measurements. Under non-resonant excitation at 488 nm, our Nd-doped SRSO films simultaneously exhibited PL from Si-np and Nd3+ demonstrating the efficient energy transfer between Si-np and Nd3+ and the sensitizing effect of Si-np. Upon increasing the Nd concentration from 0.08 to 4.9 at.%, our samples revealed a progressive quenching of the Nd3+ PL which can be correlated with the concomitant increase of disorder within the host matrix as shown by FTIR experiments. Moreover, the presence of Nd-oxide nanocrystals in the highest Nd-doped sample was established by XRD. It is, therefore, suggested that the Nd clustering, as well as disorder, are responsible for the concentration quenching of the PL of Nd3+.

No MeSH data available.


Related in: MedlinePlus