Limits...
Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study.

Ju SP, Wang YC, Lien TW - Nanoscale Res Lett (2011)

Bottom Line: The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation.The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type.The variations in nanotube geometries, partial density of states of B and N atoms, B and N charges are also discussed for (8,0) and (5,5) BNNTs at different strains.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical and Electro-Mechanical Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. jushin-pon@mail.nsysu.edu.tw.

ABSTRACT
The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation. The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type. The variations in nanotube geometries, partial density of states of B and N atoms, B and N charges are also discussed for (8,0) and (5,5) BNNTs at different strains.

No MeSH data available.


Related in: MedlinePlus

Cross-section and side views of (a) single wall (8,0) BNNT and (b) (5,5) BNNT. Gray, white, and blue beads stand for boron, nitrogen, and hydrogen atoms, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211212&req=5

Figure 1: Cross-section and side views of (a) single wall (8,0) BNNT and (b) (5,5) BNNT. Gray, white, and blue beads stand for boron, nitrogen, and hydrogen atoms, respectively.

Mentions: In this study, DFT methods are adopted to study the relationship between strain and electronic properties of single-wall armchair and zigzag BNNT. This method has been widely used in theoretical calculations of nanotube systems, including structural and electronic properties. Density functional semi-core pseudo-potentials (DSPP) [29] calculations were employed with double numerical basis sets plus d-functions (DND) and generalized gradient approximation (GGA) [30] with the Perdew-Wang 1991 (PW91) generalized gradient approximation correction [31]. Mulliken population analysis was used to obtain both the charge and net spin population on each atom. We chose the finite cluster (8,0) BNNT with length of 18.11 Å including totally 64 boron, 64 nitrogen, and 16 hydrogen atoms, and (5,5) BNNT with length of 18.25 Å including totally 70 boron, 70 nitrogen, and 20 hydrogen atoms as the studied systems. Table 1 lists the simulation result and compares it to the previous studies, Ref. [20]. The different profiles of bond type in (8,0) and (5,5) BNNT are shown in Figure 1a,b. The simulation result is close to other studies and means that our results are accurate.


Tuning the electronic properties of boron nitride nanotube by mechanical uni-axial deformation: a DFT study.

Ju SP, Wang YC, Lien TW - Nanoscale Res Lett (2011)

Cross-section and side views of (a) single wall (8,0) BNNT and (b) (5,5) BNNT. Gray, white, and blue beads stand for boron, nitrogen, and hydrogen atoms, respectively.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211212&req=5

Figure 1: Cross-section and side views of (a) single wall (8,0) BNNT and (b) (5,5) BNNT. Gray, white, and blue beads stand for boron, nitrogen, and hydrogen atoms, respectively.
Mentions: In this study, DFT methods are adopted to study the relationship between strain and electronic properties of single-wall armchair and zigzag BNNT. This method has been widely used in theoretical calculations of nanotube systems, including structural and electronic properties. Density functional semi-core pseudo-potentials (DSPP) [29] calculations were employed with double numerical basis sets plus d-functions (DND) and generalized gradient approximation (GGA) [30] with the Perdew-Wang 1991 (PW91) generalized gradient approximation correction [31]. Mulliken population analysis was used to obtain both the charge and net spin population on each atom. We chose the finite cluster (8,0) BNNT with length of 18.11 Å including totally 64 boron, 64 nitrogen, and 16 hydrogen atoms, and (5,5) BNNT with length of 18.25 Å including totally 70 boron, 70 nitrogen, and 20 hydrogen atoms as the studied systems. Table 1 lists the simulation result and compares it to the previous studies, Ref. [20]. The different profiles of bond type in (8,0) and (5,5) BNNT are shown in Figure 1a,b. The simulation result is close to other studies and means that our results are accurate.

Bottom Line: The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation.The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type.The variations in nanotube geometries, partial density of states of B and N atoms, B and N charges are also discussed for (8,0) and (5,5) BNNTs at different strains.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mechanical and Electro-Mechanical Engineering, Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan. jushin-pon@mail.nsysu.edu.tw.

ABSTRACT
The effect of uni-axial strain on the electronic properties of (8,0) zigzag and (5,5) armchair boron nitride nanotubes (BNNT) is addressed by density functional theory calculation. The stress-strain profiles indicate that these two BNNTS of differing types display very similar mechanical properties, but there are variations in HOMO-LUMO gaps at different strains, indicating that the electronic properties of BNNTs not only depend on uni-axial strain, but on BNNT type. The variations in nanotube geometries, partial density of states of B and N atoms, B and N charges are also discussed for (8,0) and (5,5) BNNTs at different strains.

No MeSH data available.


Related in: MedlinePlus