Limits...
Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography.

Jung MH, Lee H - Nanoscale Res Lett (2011)

Bottom Line: It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface.Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules.Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Creative Research Initiative, Center for Smart Molecular Memory, Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea. hyoyoung@skku.edu.

ABSTRACT
In this research, nanoimprint lithography (NIL) was used for patterning crystalline zinc oxide (ZnO) nanorods on the silicon substrate. To fabricate nano-patterned ZnO nanorods, patterning of an n-octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on SiO2 substrate was prepared by the polymer mask using NI. The ZnO seed layer was selectively coated only on the hydrophilic SiO2 surface, not on the hydrophobic OTS SAMs surface. The substrate patterned with the ZnO seed layer was treated with the oxygen plasma to oxidize the silicon surface. It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface. ZnO photoluminescence spectra showed that ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules. Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices.

No MeSH data available.


Related in: MedlinePlus

Photoluminescence spectra of ZnO nanorods grown on the seed layer untreated (blue) and treated with O2 plasma (red).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211210&req=5

Figure 9: Photoluminescence spectra of ZnO nanorods grown on the seed layer untreated (blue) and treated with O2 plasma (red).

Mentions: The optical properties of the patterned ZnO arrays were obtained with PL measurement. Figure 9 showed the PL spectra of ZnO nanorods that were untreated or treated with oxygen plasma grown from seed layer, respectively. Grown from aqueous solution at room temperature, ZnO nanorods exhibited a weak band edge emission at 378 nm resulting from free-exciton annihilation [29] and a very strong and broad yellow-orange emission at 605 nm attributed to oxygen vacancy [30,31]. The difference of PL intensity provides the luminescent properties dependent on the surface polarity of the seed layer. The ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those grown from the seed layer untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Surface defects of the ZnO nanorods such as oxygen vacancies allowed serving as strong binding sites for absorption of various organic and inorganic molecules [32]. Therefore, ZnO nanorods grown from the seed layer treated with plasma can be easily modified with several materials and controlled for the electronic properties, yielding a tunable application for the electronic devices.


Selective patterning of ZnO nanorods on silicon substrates using nanoimprint lithography.

Jung MH, Lee H - Nanoscale Res Lett (2011)

Photoluminescence spectra of ZnO nanorods grown on the seed layer untreated (blue) and treated with O2 plasma (red).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211210&req=5

Figure 9: Photoluminescence spectra of ZnO nanorods grown on the seed layer untreated (blue) and treated with O2 plasma (red).
Mentions: The optical properties of the patterned ZnO arrays were obtained with PL measurement. Figure 9 showed the PL spectra of ZnO nanorods that were untreated or treated with oxygen plasma grown from seed layer, respectively. Grown from aqueous solution at room temperature, ZnO nanorods exhibited a weak band edge emission at 378 nm resulting from free-exciton annihilation [29] and a very strong and broad yellow-orange emission at 605 nm attributed to oxygen vacancy [30,31]. The difference of PL intensity provides the luminescent properties dependent on the surface polarity of the seed layer. The ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those grown from the seed layer untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Surface defects of the ZnO nanorods such as oxygen vacancies allowed serving as strong binding sites for absorption of various organic and inorganic molecules [32]. Therefore, ZnO nanorods grown from the seed layer treated with plasma can be easily modified with several materials and controlled for the electronic properties, yielding a tunable application for the electronic devices.

Bottom Line: It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface.Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules.Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices.

View Article: PubMed Central - HTML - PubMed

Affiliation: National Creative Research Initiative, Center for Smart Molecular Memory, Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea. hyoyoung@skku.edu.

ABSTRACT
In this research, nanoimprint lithography (NIL) was used for patterning crystalline zinc oxide (ZnO) nanorods on the silicon substrate. To fabricate nano-patterned ZnO nanorods, patterning of an n-octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) on SiO2 substrate was prepared by the polymer mask using NI. The ZnO seed layer was selectively coated only on the hydrophilic SiO2 surface, not on the hydrophobic OTS SAMs surface. The substrate patterned with the ZnO seed layer was treated with the oxygen plasma to oxidize the silicon surface. It was found that the nucleation and initial growth of the crystalline ZnO were proceeded only on the ZnO seed layer, not on the silicon oxide surface. ZnO photoluminescence spectra showed that ZnO nanorods grown from the seed layer treated with plasma showed lower intensity than those untreated with plasma at 378 nm, but higher intensity at 605 nm. It is indicated that the seed layer treated with plasma produced ZnO nanorods that had a more oxygen vacancy than those grown from seed layer untreated with plasma. Since the oxygen vacancies on ZnO nanorods serve as strong binding sites for absorption of various organic and inorganic molecules. Consequently, a nano-patterning of the crystalline ZnO nanorods grown from the seed layer treated with plasma may give the versatile applications for the electronics devices.

No MeSH data available.


Related in: MedlinePlus