Limits...
Characterization of silicon heterojunctions for solar cells.

Kleider JP, Alvarez J, Ankudinov AV, Gudovskikh AS, Gushchina EV, Labrune M, Maslova OA, Favre W, Gueunier-Farret ME, Roca I Cabarrocas P, Terukov EI - Nanoscale Res Lett (2011)

Bottom Line: This is in good agreement with planar conductance measurements that show a large interface conductance.It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions.These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jean-paul.kleider@lgep.supelec.fr.

ABSTRACT
Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

No MeSH data available.


Modeling of the (n) a-Si:H/(p) c-Si heterojunction at equilibrium for various values of the conduction band offset. (a) band diagram, and (b) free electron concentration profile.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211203&req=5

Figure 8: Modeling of the (n) a-Si:H/(p) c-Si heterojunction at equilibrium for various values of the conduction band offset. (a) band diagram, and (b) free electron concentration profile.

Mentions: Figure 8a,b shows the calculated band diagram and the electron concentration profile for various values of the conduction band offset ΔEC = ECa-Si:H - ECc-Si, respectively. An inversion layer is indeed clearly seen in the interface region of c-Si when sticking increase of electron concentration with ΔEC is observed. On the contrary, increasing ΔEC leads to a stronger electron depletion in (n) a-Si:H close to the interface due to a stronger band bending.


Characterization of silicon heterojunctions for solar cells.

Kleider JP, Alvarez J, Ankudinov AV, Gudovskikh AS, Gushchina EV, Labrune M, Maslova OA, Favre W, Gueunier-Farret ME, Roca I Cabarrocas P, Terukov EI - Nanoscale Res Lett (2011)

Modeling of the (n) a-Si:H/(p) c-Si heterojunction at equilibrium for various values of the conduction band offset. (a) band diagram, and (b) free electron concentration profile.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211203&req=5

Figure 8: Modeling of the (n) a-Si:H/(p) c-Si heterojunction at equilibrium for various values of the conduction band offset. (a) band diagram, and (b) free electron concentration profile.
Mentions: Figure 8a,b shows the calculated band diagram and the electron concentration profile for various values of the conduction band offset ΔEC = ECa-Si:H - ECc-Si, respectively. An inversion layer is indeed clearly seen in the interface region of c-Si when sticking increase of electron concentration with ΔEC is observed. On the contrary, increasing ΔEC leads to a stronger electron depletion in (n) a-Si:H close to the interface due to a stronger band bending.

Bottom Line: This is in good agreement with planar conductance measurements that show a large interface conductance.It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions.These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jean-paul.kleider@lgep.supelec.fr.

ABSTRACT
Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

No MeSH data available.