Limits...
Characterization of silicon heterojunctions for solar cells.

Kleider JP, Alvarez J, Ankudinov AV, Gudovskikh AS, Gushchina EV, Labrune M, Maslova OA, Favre W, Gueunier-Farret ME, Roca I Cabarrocas P, Terukov EI - Nanoscale Res Lett (2011)

Bottom Line: This is in good agreement with planar conductance measurements that show a large interface conductance.It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions.These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jean-paul.kleider@lgep.supelec.fr.

ABSTRACT
Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

No MeSH data available.


Cross-section of a silicon heterojunction solar cell on n-type c-Si.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211203&req=5

Figure 1: Cross-section of a silicon heterojunction solar cell on n-type c-Si.

Mentions: A typical solar cell structure based on a-Si:H/c-Si heterojunctions formed with n-type c-Si is presented in Figure 1. A similar structure stands for p-type c-Si, replacing the n-type a-Si:H by p-type a-Si:H and vice versa. For n-type c-Si, we used Float Zone, n-type c-Si wafers, 〈100〉 oriented, with resistivity: ρ = 1-5 Ω cm, and thickness: W = 300 μm. For the p-type c-Si, we used Czochralski (CZ) c-Si wafers, 〈100〉 oriented, with resistivity: ρ = 14-22 Ω cm, and thickness: W = 300 μm. We used indium tin oxide (ITO) as the front transparent conductive oxide (TCO), and aluminum as the back metal contact. The a-Si:H layers were deposited at Ecole Polytechnique in a radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) reactor at a substrate temperature of 200°C. Spectroscopic ellipsometry measurements and modeling were used to check that the deposited silicon thin layers were truly amorphous, and that no epitaxial growth occurred on the c-Si substrate.


Characterization of silicon heterojunctions for solar cells.

Kleider JP, Alvarez J, Ankudinov AV, Gudovskikh AS, Gushchina EV, Labrune M, Maslova OA, Favre W, Gueunier-Farret ME, Roca I Cabarrocas P, Terukov EI - Nanoscale Res Lett (2011)

Cross-section of a silicon heterojunction solar cell on n-type c-Si.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211203&req=5

Figure 1: Cross-section of a silicon heterojunction solar cell on n-type c-Si.
Mentions: A typical solar cell structure based on a-Si:H/c-Si heterojunctions formed with n-type c-Si is presented in Figure 1. A similar structure stands for p-type c-Si, replacing the n-type a-Si:H by p-type a-Si:H and vice versa. For n-type c-Si, we used Float Zone, n-type c-Si wafers, 〈100〉 oriented, with resistivity: ρ = 1-5 Ω cm, and thickness: W = 300 μm. For the p-type c-Si, we used Czochralski (CZ) c-Si wafers, 〈100〉 oriented, with resistivity: ρ = 14-22 Ω cm, and thickness: W = 300 μm. We used indium tin oxide (ITO) as the front transparent conductive oxide (TCO), and aluminum as the back metal contact. The a-Si:H layers were deposited at Ecole Polytechnique in a radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) reactor at a substrate temperature of 200°C. Spectroscopic ellipsometry measurements and modeling were used to check that the deposited silicon thin layers were truly amorphous, and that no epitaxial growth occurred on the c-Si substrate.

Bottom Line: This is in good agreement with planar conductance measurements that show a large interface conductance.It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions.These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jean-paul.kleider@lgep.supelec.fr.

ABSTRACT
Conductive-probe atomic force microscopy (CP-AFM) measurements reveal the existence of a conductive channel at the interface between p-type hydrogenated amorphous silicon (a-Si:H) and n-type crystalline silicon (c-Si) as well as at the interface between n-type a-Si:H and p-type c-Si. This is in good agreement with planar conductance measurements that show a large interface conductance. It is demonstrated that these features are related to the existence of a strong inversion layer of holes at the c-Si surface of (p) a-Si:H/(n) c-Si structures, and to a strong inversion layer of electrons at the c-Si surface of (n) a-Si:H/(p) c-Si heterojunctions. These are intimately related to the band offsets, which allows us to determine these parameters with good precision.

No MeSH data available.