Limits...
Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect.

Zhou H, Fang G, Liu N, Zhao X - Nanoscale Res Lett (2011)

Bottom Line: In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively.For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity (Dλ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism.Also the ratio of D254* to D546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Electronic Science and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China. gjfang@whu.edu.cn.

ABSTRACT
Pt/ZnO nanorod (NR) and Pt/modified ZnO NR Schottky barrier ultraviolet (UV) photodetectors (PDs) were prepared with different seed layers and metal oxide modifying layer materials. In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively. For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity (Dλ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism. Also the ratio of D254* to D546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

No MeSH data available.


The spectral responsivity and detectivity curves of PDs without metal oxide coating under the forward biases of 2 V.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211197&req=5

Figure 5: The spectral responsivity and detectivity curves of PDs without metal oxide coating under the forward biases of 2 V.

Mentions: The responsivity (R) is an important parameter to reflect the performance of PDs, and so the spectral R curves obtained from non-oxide-coated PDs annealed at 300°C with different seed layer under the forward biases of 2 V are presented in Figure 5. From these spectra, it can be seen that the responsivity of the PDs with MgZnO seed layer is higher than that of the PDs with ZnO seed layer and reaches to as high as 0.44 A/W at 254 nm, which is double that of PDs with ZnO seed layer (0.22 A/W). The detectivity is also calculated, which is given by the following [16]:


Ultraviolet photodetectors based on ZnO nanorods-seed layer effect and metal oxide modifying layer effect.

Zhou H, Fang G, Liu N, Zhao X - Nanoscale Res Lett (2011)

The spectral responsivity and detectivity curves of PDs without metal oxide coating under the forward biases of 2 V.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211197&req=5

Figure 5: The spectral responsivity and detectivity curves of PDs without metal oxide coating under the forward biases of 2 V.
Mentions: The responsivity (R) is an important parameter to reflect the performance of PDs, and so the spectral R curves obtained from non-oxide-coated PDs annealed at 300°C with different seed layer under the forward biases of 2 V are presented in Figure 5. From these spectra, it can be seen that the responsivity of the PDs with MgZnO seed layer is higher than that of the PDs with ZnO seed layer and reaches to as high as 0.44 A/W at 254 nm, which is double that of PDs with ZnO seed layer (0.22 A/W). The detectivity is also calculated, which is given by the following [16]:

Bottom Line: In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively.For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity (Dλ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism.Also the ratio of D254* to D546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Electronic Science and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China. gjfang@whu.edu.cn.

ABSTRACT
Pt/ZnO nanorod (NR) and Pt/modified ZnO NR Schottky barrier ultraviolet (UV) photodetectors (PDs) were prepared with different seed layers and metal oxide modifying layer materials. In this paper, we discussed the effect of metal oxide modifying layer on the performance of UV PDs pre- and post-deposition annealing at 300°C, respectively. For Schottky barrier UV PDs with different seed layers, the MgZnO seed layer-PDs without metal oxide coating showed bigger responsivity and larger detectivity (Dλ*) than those of PDs with ZnO seed layer, and the reason was illustrated through energy band theory and the electron transport mechanism. Also the ratio of D254* to D546* was calculated above 8 × 102 for all PDs, which demonstrated that our PDs showed high selectivity for detecting UV light with less influence of light with long wavelength.

No MeSH data available.