Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates.
Bottom Line:
Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements.On the best samples, we find a moderate p-type doping, a high-carrier mobility and resolve the half-integer quantum Hall effect typical of high-quality graphene samples.A rough estimation of the density of states is given from temperature measurements.
Affiliation: Laboratoire Charles Coulomb, UMR 5221 CNRS-UM2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. jouault@ges.univ-montp2.fr.
ABSTRACT
Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. On the best samples, we find a moderate p-type doping, a high-carrier mobility and resolve the half-integer quantum Hall effect typical of high-quality graphene samples. A rough estimation of the density of states is given from temperature measurements. No MeSH data available. Related in: MedlinePlus |
![]() Related In:
Results -
Collection
License getmorefigures.php?uid=PMC3211189&req=5
Figure 7: Longitudinal resistance (in ohms) as a function of the injected current. Breakdown of the quantization occurs at I = 0.5 μA. Mentions: Finally, since EG has recently been proposed for metrological application, we plot, in Figure 7, the longitudinal resistance as a function of the current at B = 13.5 T. This magnetic field is far from the filling factor υ = 2 and; therefore, the breakdown occurs at relatively low current: I = 0.5 μA, which corresponds to a current density j = 0.025 A/m. By comparison, for III-V heterostructures, critical current values of 1 A/m are reported. |
View Article: PubMed Central - HTML - PubMed
Affiliation: Laboratoire Charles Coulomb, UMR 5221 CNRS-UM2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. jouault@ges.univ-montp2.fr.
No MeSH data available.