Limits...
Scanning tip measurement for identification of point defects.

Dózsa L, Molnár G, Raineri V, Giannazzo F, Ferencz J, Lányi S - Nanoscale Res Lett (2011)

Bottom Line: In the Fe-deposited area, Fe-related defects dominate the surface layer in about 0.5 μm depth.These defects deteriorated the Schottky junction characteristic.Outside the Fe-deposited area, Fe-related defect concentration was identified in a thin layer near the surface.

View Article: PubMed Central - HTML - PubMed

Affiliation: Research Institute for Technical Physics and Materials Sciences, P,O, 49, H-1525 Budapest, Hungary. dozsa@mfa.kfki.hu.

ABSTRACT
Self-assembled iron-silicide nanostructures were prepared by reactive deposition epitaxy of Fe onto silicon. Capacitance-voltage, current-voltage, and deep level transient spectroscopy (DLTS) were used to measure the electrical properties of Au/silicon Schottky junctions. Spreading resistance and scanning probe capacitance microscopy (SCM) were applied to measure local electrical properties. Using a preamplifier the sensitivity of DLTS was increased satisfactorily to measure transients of the scanning tip semiconductor junction. In the Fe-deposited area, Fe-related defects dominate the surface layer in about 0.5 μm depth. These defects deteriorated the Schottky junction characteristic. Outside the Fe-deposited area, Fe-related defect concentration was identified in a thin layer near the surface. The defect transients in this area were measured both in macroscopic Schottky junctions and by scanning tip DLTS and were detected by bias modulation frequency dependence in SCM.

No MeSH data available.


Related in: MedlinePlus

SCM signal measured on the Fe-deposited area and on the silicon surface. a. dC/dV-voltage plots at 10 and 90 kHz bias. b. Dependence of the amplitude of the dC/dV peak at about +5 V on the bias modulation frequencies.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211188&req=5

Figure 2: SCM signal measured on the Fe-deposited area and on the silicon surface. a. dC/dV-voltage plots at 10 and 90 kHz bias. b. Dependence of the amplitude of the dC/dV peak at about +5 V on the bias modulation frequencies.

Mentions: In the Fe-deposited area SCM has shown a patterned surface on the 1 μm scale. The SCM contrast was clear; however, comparison of SCM images with secondary electron microscopy and AFM images shows that the quantum dots cannot be resolved by SCM [7]. A summary of the SCM measurements is shown in Figure 2. dC/dV-bias characteristics at 10 and 90 kHz modulation frequencies are shown in Figure 2a. The bias dependence of dC/dV in the Fe-deposited area is weak as is shown in Figure 2a. Outside the Fe-deposited area the sign of the peak in dC/dV has changed by varying the bias modulation frequency from 10 to 90 kHz as it is shown in Figure 2a. The position of the peak at about 5 V bias was independent of the modulation frequency, however, its amplitude varied with bias modulation frequency as it is shown in Figure 2b. The scans repeated with increasing and decreasing bias modulation frequencies exhibited some hysteresis indicated by Si up and Si down in Figure 2b. The change in the sign of dC/dV can be explained by defects on the surface.


Scanning tip measurement for identification of point defects.

Dózsa L, Molnár G, Raineri V, Giannazzo F, Ferencz J, Lányi S - Nanoscale Res Lett (2011)

SCM signal measured on the Fe-deposited area and on the silicon surface. a. dC/dV-voltage plots at 10 and 90 kHz bias. b. Dependence of the amplitude of the dC/dV peak at about +5 V on the bias modulation frequencies.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211188&req=5

Figure 2: SCM signal measured on the Fe-deposited area and on the silicon surface. a. dC/dV-voltage plots at 10 and 90 kHz bias. b. Dependence of the amplitude of the dC/dV peak at about +5 V on the bias modulation frequencies.
Mentions: In the Fe-deposited area SCM has shown a patterned surface on the 1 μm scale. The SCM contrast was clear; however, comparison of SCM images with secondary electron microscopy and AFM images shows that the quantum dots cannot be resolved by SCM [7]. A summary of the SCM measurements is shown in Figure 2. dC/dV-bias characteristics at 10 and 90 kHz modulation frequencies are shown in Figure 2a. The bias dependence of dC/dV in the Fe-deposited area is weak as is shown in Figure 2a. Outside the Fe-deposited area the sign of the peak in dC/dV has changed by varying the bias modulation frequency from 10 to 90 kHz as it is shown in Figure 2a. The position of the peak at about 5 V bias was independent of the modulation frequency, however, its amplitude varied with bias modulation frequency as it is shown in Figure 2b. The scans repeated with increasing and decreasing bias modulation frequencies exhibited some hysteresis indicated by Si up and Si down in Figure 2b. The change in the sign of dC/dV can be explained by defects on the surface.

Bottom Line: In the Fe-deposited area, Fe-related defects dominate the surface layer in about 0.5 μm depth.These defects deteriorated the Schottky junction characteristic.Outside the Fe-deposited area, Fe-related defect concentration was identified in a thin layer near the surface.

View Article: PubMed Central - HTML - PubMed

Affiliation: Research Institute for Technical Physics and Materials Sciences, P,O, 49, H-1525 Budapest, Hungary. dozsa@mfa.kfki.hu.

ABSTRACT
Self-assembled iron-silicide nanostructures were prepared by reactive deposition epitaxy of Fe onto silicon. Capacitance-voltage, current-voltage, and deep level transient spectroscopy (DLTS) were used to measure the electrical properties of Au/silicon Schottky junctions. Spreading resistance and scanning probe capacitance microscopy (SCM) were applied to measure local electrical properties. Using a preamplifier the sensitivity of DLTS was increased satisfactorily to measure transients of the scanning tip semiconductor junction. In the Fe-deposited area, Fe-related defects dominate the surface layer in about 0.5 μm depth. These defects deteriorated the Schottky junction characteristic. Outside the Fe-deposited area, Fe-related defect concentration was identified in a thin layer near the surface. The defect transients in this area were measured both in macroscopic Schottky junctions and by scanning tip DLTS and were detected by bias modulation frequency dependence in SCM.

No MeSH data available.


Related in: MedlinePlus