Limits...
Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials.

Eswaraiah V, Sankaranarayanan V, Ramaprabhu S - Nanoscale Res Lett (2011)

Bottom Line: Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy.The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m).EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.

View Article: PubMed Central - HTML - PubMed

Affiliation: Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials, Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India. ramp@iitm.ac.in.

ABSTRACT
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.

No MeSH data available.


Related in: MedlinePlus

Raman spectra of purified and functionalized MWCNTs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211184&req=5

Figure 4: Raman spectra of purified and functionalized MWCNTs.

Mentions: Figure 4 shows the Raman spectra of purified and functionalized MWCNTs. The spectra consists of three main peaks. The peak at 1,343 cm-1 is assigned to the defects and disordered graphite structures, while the peaks at 1,586 cm-1 and 2,693 cm-1 are attributed to the graphite band which is common to all sp2 systems and second-order Raman scattering process, respectively. Intensity ratio of defect band and graphite band is a signature of the degree of functionalization of the MWCNTs. As seen from Figure 4, ID/IG of pure carbon nanotubes is 0.868 whereas that for functionalized carbon nanotubes is 0.928 indicating the more defective nature of f-MWCNTs.


Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials.

Eswaraiah V, Sankaranarayanan V, Ramaprabhu S - Nanoscale Res Lett (2011)

Raman spectra of purified and functionalized MWCNTs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211184&req=5

Figure 4: Raman spectra of purified and functionalized MWCNTs.
Mentions: Figure 4 shows the Raman spectra of purified and functionalized MWCNTs. The spectra consists of three main peaks. The peak at 1,343 cm-1 is assigned to the defects and disordered graphite structures, while the peaks at 1,586 cm-1 and 2,693 cm-1 are attributed to the graphite band which is common to all sp2 systems and second-order Raman scattering process, respectively. Intensity ratio of defect band and graphite band is a signature of the degree of functionalization of the MWCNTs. As seen from Figure 4, ID/IG of pure carbon nanotubes is 0.868 whereas that for functionalized carbon nanotubes is 0.928 indicating the more defective nature of f-MWCNTs.

Bottom Line: Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy.The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m).EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.

View Article: PubMed Central - HTML - PubMed

Affiliation: Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials, Technology Centre (NFMTC), Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India. ramp@iitm.ac.in.

ABSTRACT
Novel polymer nanocomposites comprising of MnO2 nanotubes (MNTs), functionalized multiwalled carbon nanotubes (f-MWCNTs), and polyvinylidene fluoride (PVDF) were synthesized. Homogeneous distribution of f-MWCNTs and MNTs in PVDF matrix were confirmed by field emission scanning electron microscopy. Electrical conductivity measurements were performed on these polymer composites using four probe technique. The addition of 2 wt.% of MNTs (2 wt.%, f-MWCNTs) to PVDF matrix results in an increase in the electrical conductivity from 10-16S/m to 4.5 × 10-5S/m (3.2 × 10-1S/m). Electromagnetic interference shielding effectiveness (EMI SE) was measured with vector network analyzer using waveguide sample holder in X-band frequency range. EMI SE of approximately 20 dB has been obtained with the addition of 5 wt.% MNTs-1 wt.% f-MWCNTs to PVDF in comparison with EMI SE of approximately 18 dB for 7 wt.% of f-MWCNTs indicating the potential use of the present MNT/f-MWCNT/PVDF composite as low-cost EMI shielding materials in X-band region.

No MeSH data available.


Related in: MedlinePlus