Limits...
Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix.

Wan Z, Huang S, Green MA, Conibeer G - Nanoscale Res Lett (2011)

Bottom Line: In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system.Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation.Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

View Article: PubMed Central - HTML - PubMed

Affiliation: ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, Australia. z.wan@student.unsw.edu.au.

ABSTRACT
In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%). Si nanocrystals (Si-NC) containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

No MeSH data available.


Related in: MedlinePlus

XRD curves of the samples with different Si concentrations after furnace annealing.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211175&req=5

Figure 4: XRD curves of the samples with different Si concentrations after furnace annealing.

Mentions: Figure 4 compares the XRD spectra of the samples with different Si concentrations after 1,100 C annealing. All the annealed samples show clear Bragg peaks from Si and β-SiC crystallization. In addition, the intensity of Si Bragg peak increases while the SiC peak decreases with the increasing of Si concentration. This phenomenon can be explained by more amorphous silicon (a-Si) is involved in precipitation and crystallization, as a result, higher crystallization volume of crystallized-Si can be achieved. This reason can also be used to explain SiC peaks: when Si concentration increase, SiC concentration decreases, and the volume of SiC crystallinity decreases due to less available a-SiC.


Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix.

Wan Z, Huang S, Green MA, Conibeer G - Nanoscale Res Lett (2011)

XRD curves of the samples with different Si concentrations after furnace annealing.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211175&req=5

Figure 4: XRD curves of the samples with different Si concentrations after furnace annealing.
Mentions: Figure 4 compares the XRD spectra of the samples with different Si concentrations after 1,100 C annealing. All the annealed samples show clear Bragg peaks from Si and β-SiC crystallization. In addition, the intensity of Si Bragg peak increases while the SiC peak decreases with the increasing of Si concentration. This phenomenon can be explained by more amorphous silicon (a-Si) is involved in precipitation and crystallization, as a result, higher crystallization volume of crystallized-Si can be achieved. This reason can also be used to explain SiC peaks: when Si concentration increase, SiC concentration decreases, and the volume of SiC crystallinity decreases due to less available a-SiC.

Bottom Line: In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system.Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation.Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

View Article: PubMed Central - HTML - PubMed

Affiliation: ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, Australia. z.wan@student.unsw.edu.au.

ABSTRACT
In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%). Si nanocrystals (Si-NC) containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

No MeSH data available.


Related in: MedlinePlus