Limits...
Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix.

Wan Z, Huang S, Green MA, Conibeer G - Nanoscale Res Lett (2011)

Bottom Line: In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system.Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation.Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

View Article: PubMed Central - HTML - PubMed

Affiliation: ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, Australia. z.wan@student.unsw.edu.au.

ABSTRACT
In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%). Si nanocrystals (Si-NC) containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

No MeSH data available.


Related in: MedlinePlus

Cross-section TEM image of SRC50 sample annealed by furnace.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211175&req=5

Figure 2: Cross-section TEM image of SRC50 sample annealed by furnace.

Mentions: Figures 1 and 2 show the plan view TEM images of the sample SRC50 after RTA and furnace annealing. The volume percentage of Si over SiC is 50 v% from RF sputter rates of Si and SiC are calibrated by crystal thickness monitor. Both images clearly reveal the formation of NC. The NC which is circled by solid lines with a fringe spacing 3.1 Å corresponds to Si (111) lattice plane; and the dash-line which is circled with a fringe spacing of 2.5 Å corresponds to the lattice plane of β-SiC (111) [8]. The nanocrystal size and shape are similar in both annealing conditions, with Si size 6-7 nm and SiC size 2-3.5 nm.


Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix.

Wan Z, Huang S, Green MA, Conibeer G - Nanoscale Res Lett (2011)

Cross-section TEM image of SRC50 sample annealed by furnace.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211175&req=5

Figure 2: Cross-section TEM image of SRC50 sample annealed by furnace.
Mentions: Figures 1 and 2 show the plan view TEM images of the sample SRC50 after RTA and furnace annealing. The volume percentage of Si over SiC is 50 v% from RF sputter rates of Si and SiC are calibrated by crystal thickness monitor. Both images clearly reveal the formation of NC. The NC which is circled by solid lines with a fringe spacing 3.1 Å corresponds to Si (111) lattice plane; and the dash-line which is circled with a fringe spacing of 2.5 Å corresponds to the lattice plane of β-SiC (111) [8]. The nanocrystal size and shape are similar in both annealing conditions, with Si size 6-7 nm and SiC size 2-3.5 nm.

Bottom Line: In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system.Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation.Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

View Article: PubMed Central - HTML - PubMed

Affiliation: ARC Photovoltaics Centre of Excellence, University of New South Wales (UNSW), Sydney, Australia. z.wan@student.unsw.edu.au.

ABSTRACT
In this paper, a positive effect of rapid thermal annealing (RTA) technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC) matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%). Si nanocrystals (Si-NC) containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

No MeSH data available.


Related in: MedlinePlus