Limits...
Discussion on the thermal conductivity enhancement of nanofluids.

Xie H, Yu W, Li Y, Chen L - Nanoscale Res Lett (2011)

Bottom Line: We produced a series of nanofluids and measured their thermal conductivities.Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives.The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China. hqxie@eed.sspu.cn.

ABSTRACT
Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

No MeSH data available.


Related in: MedlinePlus

Effect of surfactant structures on the thermal conductivity enhancement ratio.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211170&req=5

Figure 9: Effect of surfactant structures on the thermal conductivity enhancement ratio.

Mentions: The effect of the structures of cationic gemini surfactant molecules on the thermal conductivity enhancement is shown in Figure 9. The fractions of the dispersed CNTs and the cationic gemini surfactants is 0.1 vol% and 0.6 wt%, respectively. The spacer chain length of the cationic gemini surfactant increase from 3 methylenes to 6 methylenes. It is seen that the thermal conductivity enhancement ratio increases with the decrease of spacer chain length of cationic gemini surfactant. Zeta potential analysis indicates that the CNT nanofluids stabilized by gemini surfactant with short spacer chain length have better stabilities. Increase of spacer chain length of surfactant might give rise to sediments of CNTs in the nanofluids, resulting in the decrease of thermal conductivity enhancement of the nanofluids.


Discussion on the thermal conductivity enhancement of nanofluids.

Xie H, Yu W, Li Y, Chen L - Nanoscale Res Lett (2011)

Effect of surfactant structures on the thermal conductivity enhancement ratio.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211170&req=5

Figure 9: Effect of surfactant structures on the thermal conductivity enhancement ratio.
Mentions: The effect of the structures of cationic gemini surfactant molecules on the thermal conductivity enhancement is shown in Figure 9. The fractions of the dispersed CNTs and the cationic gemini surfactants is 0.1 vol% and 0.6 wt%, respectively. The spacer chain length of the cationic gemini surfactant increase from 3 methylenes to 6 methylenes. It is seen that the thermal conductivity enhancement ratio increases with the decrease of spacer chain length of cationic gemini surfactant. Zeta potential analysis indicates that the CNT nanofluids stabilized by gemini surfactant with short spacer chain length have better stabilities. Increase of spacer chain length of surfactant might give rise to sediments of CNTs in the nanofluids, resulting in the decrease of thermal conductivity enhancement of the nanofluids.

Bottom Line: We produced a series of nanofluids and measured their thermal conductivities.Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives.The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China. hqxie@eed.sspu.cn.

ABSTRACT
Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

No MeSH data available.


Related in: MedlinePlus