Limits...
Discussion on the thermal conductivity enhancement of nanofluids.

Xie H, Yu W, Li Y, Chen L - Nanoscale Res Lett (2011)

Bottom Line: We produced a series of nanofluids and measured their thermal conductivities.Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives.The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China. hqxie@eed.sspu.cn.

ABSTRACT
Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

No MeSH data available.


Related in: MedlinePlus

Thermal conductivity enhancement ratios at different pH values: Al2O3-DW [7]; DNP-EG [40].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211170&req=5

Figure 7: Thermal conductivity enhancement ratios at different pH values: Al2O3-DW [7]; DNP-EG [40].

Mentions: For some nanofluids, the pH values of the suspensions have direct effects on the thermal conductivity enhancement. Figure 7 presents the thermal conductivity enhancement ratios at different pH values [7,40]. The results show that the enhanced thermal conductivity increases with an increase in the difference between the pH value of aqueous suspension and the isoelectric point of Al2O3 particle [7]. When the NPs are dispersed into a base fluid, the overall behavior of the particle-fluid interaction depends on the properties of the particle surface. For Al2O3 particles, the isoelectric point (pHiep) is determined to be 9.2, i.e., the repulsive forces among Al2O3 particles is zero, and Al2O3 particles will coagulate together under this pH value. Therefore, when pH value is equal or close to 9.2, Al2O3 particle suspension is unstable according to DLVO theory [56]. The hydration forces among particles increase with the increasing difference of the pH value of a suspension from the pHiep, which results in the enhanced mobility of NPs in the suspension. The microscopic motions of the particles cause micro-convection that enhances the heat transport process. Wensel's study showed that the thermal conductivity of nanofluids containing oxide NPs and CNTs with very low percentage loading decreased when the pH value is shifted from 7 to 11.45 under the influence of a strong outside magnetic field [14].


Discussion on the thermal conductivity enhancement of nanofluids.

Xie H, Yu W, Li Y, Chen L - Nanoscale Res Lett (2011)

Thermal conductivity enhancement ratios at different pH values: Al2O3-DW [7]; DNP-EG [40].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211170&req=5

Figure 7: Thermal conductivity enhancement ratios at different pH values: Al2O3-DW [7]; DNP-EG [40].
Mentions: For some nanofluids, the pH values of the suspensions have direct effects on the thermal conductivity enhancement. Figure 7 presents the thermal conductivity enhancement ratios at different pH values [7,40]. The results show that the enhanced thermal conductivity increases with an increase in the difference between the pH value of aqueous suspension and the isoelectric point of Al2O3 particle [7]. When the NPs are dispersed into a base fluid, the overall behavior of the particle-fluid interaction depends on the properties of the particle surface. For Al2O3 particles, the isoelectric point (pHiep) is determined to be 9.2, i.e., the repulsive forces among Al2O3 particles is zero, and Al2O3 particles will coagulate together under this pH value. Therefore, when pH value is equal or close to 9.2, Al2O3 particle suspension is unstable according to DLVO theory [56]. The hydration forces among particles increase with the increasing difference of the pH value of a suspension from the pHiep, which results in the enhanced mobility of NPs in the suspension. The microscopic motions of the particles cause micro-convection that enhances the heat transport process. Wensel's study showed that the thermal conductivity of nanofluids containing oxide NPs and CNTs with very low percentage loading decreased when the pH value is shifted from 7 to 11.45 under the influence of a strong outside magnetic field [14].

Bottom Line: We produced a series of nanofluids and measured their thermal conductivities.Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives.The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209, China. hqxie@eed.sspu.cn.

ABSTRACT
Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed.

No MeSH data available.


Related in: MedlinePlus