Limits...
Ag nanoparticles/PPV composite nanofibers with high and sensitive opto-electronic response.

Chen J, Yang P, Wang C, Zhan S, Zhang L, Huang Z, Li W, Wang C, Jiang Z, Shao C - Nanoscale Res Lett (2011)

Bottom Line: The novel Ag nanoparticles/poly(p-phenylene vinylene) [PPV] composite nanofibers were prepared by electrospinning.The Fourier transform infrared spectra suggest that there could be a coordination effect to a certain extent between the Ag atom and the π system of PPV, which is significantly favorable for the dissociation of photoexcitons and the charge transfer at the interface between the Ag nanoparticle and the PPV.The Au top electrode device of the single Ag/PPV composite nanofiber exhibits high and sensitive opto-electronic responses.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China. huangzh295@nenu.edu.cn.

ABSTRACT
The novel Ag nanoparticles/poly(p-phenylene vinylene) [PPV] composite nanofibers were prepared by electrospinning. The transmission electron microscope image shows that the average diameter of composite fibers is about 500 nm and Ag nanoparticles are uniformly dispersed in the PPV matrix with an average diameter of about 25 nm. The Fourier transform infrared spectra suggest that there could be a coordination effect to a certain extent between the Ag atom and the π system of PPV, which is significantly favorable for the dissociation of photoexcitons and the charge transfer at the interface between the Ag nanoparticle and the PPV. The Au top electrode device of the single Ag/PPV composite nanofiber exhibits high and sensitive opto-electronic responses. Under light illumination of 5.76 mW/cm2 and voltage of 20 V, the photocurrent is over three times larger than the dark current under same voltage, which indicates that this kind of composite fiber is an excellent opto-electronic nanomaterial.

No MeSH data available.


Related in: MedlinePlus

top electrode device of the single composite fiber. a SEM image of Au top electrode device (the part closed by polygon indicated by the red arrows). b SEM image of the device's channel (insulate gap) and crossed nanofiber.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211167&req=5

Figure 6: top electrode device of the single composite fiber. a SEM image of Au top electrode device (the part closed by polygon indicated by the red arrows). b SEM image of the device's channel (insulate gap) and crossed nanofiber.

Mentions: To measure the opto-electronic property of the composite nanofiber, the novel 'organic ribbon mask' technique of Professor Hu's group [16] was used to construct the Au top electrode device of the single composite fiber shown in Figure 6a,b. The fabrication process of the device is briefly described below: Firstly, a single composite nanofiber was transferred onto the SiO2 substrate (the white line and the horizontal fiber in Figure 6a,b, respectively). Then, an organic ribbon with a diameter of approximately 1.5 μm was picked up and crossed over the composite nanofiber. Finally, the gold was vacuum-deposited. After the 'organic ribbon mask' was peeled off, the insulate part acted as the channel of device (see the dark part in Figure 6b). Finally, the insulate lines were drawn on the Au film using a micromanipulator probe to form a polygon (indicated by the arrows in Figure 6a), which was the device outline.


Ag nanoparticles/PPV composite nanofibers with high and sensitive opto-electronic response.

Chen J, Yang P, Wang C, Zhan S, Zhang L, Huang Z, Li W, Wang C, Jiang Z, Shao C - Nanoscale Res Lett (2011)

top electrode device of the single composite fiber. a SEM image of Au top electrode device (the part closed by polygon indicated by the red arrows). b SEM image of the device's channel (insulate gap) and crossed nanofiber.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211167&req=5

Figure 6: top electrode device of the single composite fiber. a SEM image of Au top electrode device (the part closed by polygon indicated by the red arrows). b SEM image of the device's channel (insulate gap) and crossed nanofiber.
Mentions: To measure the opto-electronic property of the composite nanofiber, the novel 'organic ribbon mask' technique of Professor Hu's group [16] was used to construct the Au top electrode device of the single composite fiber shown in Figure 6a,b. The fabrication process of the device is briefly described below: Firstly, a single composite nanofiber was transferred onto the SiO2 substrate (the white line and the horizontal fiber in Figure 6a,b, respectively). Then, an organic ribbon with a diameter of approximately 1.5 μm was picked up and crossed over the composite nanofiber. Finally, the gold was vacuum-deposited. After the 'organic ribbon mask' was peeled off, the insulate part acted as the channel of device (see the dark part in Figure 6b). Finally, the insulate lines were drawn on the Au film using a micromanipulator probe to form a polygon (indicated by the arrows in Figure 6a), which was the device outline.

Bottom Line: The novel Ag nanoparticles/poly(p-phenylene vinylene) [PPV] composite nanofibers were prepared by electrospinning.The Fourier transform infrared spectra suggest that there could be a coordination effect to a certain extent between the Ag atom and the π system of PPV, which is significantly favorable for the dissociation of photoexcitons and the charge transfer at the interface between the Ag nanoparticle and the PPV.The Au top electrode device of the single Ag/PPV composite nanofiber exhibits high and sensitive opto-electronic responses.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China. huangzh295@nenu.edu.cn.

ABSTRACT
The novel Ag nanoparticles/poly(p-phenylene vinylene) [PPV] composite nanofibers were prepared by electrospinning. The transmission electron microscope image shows that the average diameter of composite fibers is about 500 nm and Ag nanoparticles are uniformly dispersed in the PPV matrix with an average diameter of about 25 nm. The Fourier transform infrared spectra suggest that there could be a coordination effect to a certain extent between the Ag atom and the π system of PPV, which is significantly favorable for the dissociation of photoexcitons and the charge transfer at the interface between the Ag nanoparticle and the PPV. The Au top electrode device of the single Ag/PPV composite nanofiber exhibits high and sensitive opto-electronic responses. Under light illumination of 5.76 mW/cm2 and voltage of 20 V, the photocurrent is over three times larger than the dark current under same voltage, which indicates that this kind of composite fiber is an excellent opto-electronic nanomaterial.

No MeSH data available.


Related in: MedlinePlus