Limits...
Conductive-probe atomic force microscopy characterization of silicon nanowire.

Alvarez J, Ngo I, Gueunier-Farret ME, Kleider JP, Yu L, Cabarrocas PR, Perraud S, Rouvière E, Celle C, Mouchet C, Simonato JP - Nanoscale Res Lett (2011)

Bottom Line: Local current mapping shows that the wires have internal microstructures.Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates.The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jose.alvarez@supelec.fr.

ABSTRACT
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

No MeSH data available.


Related in: MedlinePlus

Surface scan illustrating the topography (left) and the local resistance (right) performed on undoped vertical SiNWs (CD-08-001). Image zoom shows several examples of electrically conductive (full-line circle) and non-conductive (dot-line circle) SiNWs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211155&req=5

Figure 7: Surface scan illustrating the topography (left) and the local resistance (right) performed on undoped vertical SiNWs (CD-08-001). Image zoom shows several examples of electrically conductive (full-line circle) and non-conductive (dot-line circle) SiNWs.

Mentions: Figure 7 depicts a 10 × 10 μm2 surface map that illustrates, from left to right, the topography and the electrical properties of undoped SiNWs (CD-08-001). The brightest spots (highest features) in the topography image represent the SiNWs which are generally well correlated with the conductive blue spots in the electrical image. However, the zoom (4.2 × 4.2 μm2) allows it to point out several examples of SiNWs which are not electrically conductive (dot-line circle) as distinct from those showing conductive properties (full-line circle). The oxide formation and the AFM tip loading force are possible reasons that could explain that SiNWs appear insulating in native.


Conductive-probe atomic force microscopy characterization of silicon nanowire.

Alvarez J, Ngo I, Gueunier-Farret ME, Kleider JP, Yu L, Cabarrocas PR, Perraud S, Rouvière E, Celle C, Mouchet C, Simonato JP - Nanoscale Res Lett (2011)

Surface scan illustrating the topography (left) and the local resistance (right) performed on undoped vertical SiNWs (CD-08-001). Image zoom shows several examples of electrically conductive (full-line circle) and non-conductive (dot-line circle) SiNWs.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211155&req=5

Figure 7: Surface scan illustrating the topography (left) and the local resistance (right) performed on undoped vertical SiNWs (CD-08-001). Image zoom shows several examples of electrically conductive (full-line circle) and non-conductive (dot-line circle) SiNWs.
Mentions: Figure 7 depicts a 10 × 10 μm2 surface map that illustrates, from left to right, the topography and the electrical properties of undoped SiNWs (CD-08-001). The brightest spots (highest features) in the topography image represent the SiNWs which are generally well correlated with the conductive blue spots in the electrical image. However, the zoom (4.2 × 4.2 μm2) allows it to point out several examples of SiNWs which are not electrically conductive (dot-line circle) as distinct from those showing conductive properties (full-line circle). The oxide formation and the AFM tip loading force are possible reasons that could explain that SiNWs appear insulating in native.

Bottom Line: Local current mapping shows that the wires have internal microstructures.Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates.The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jose.alvarez@supelec.fr.

ABSTRACT
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

No MeSH data available.


Related in: MedlinePlus