Limits...
Conductive-probe atomic force microscopy characterization of silicon nanowire.

Alvarez J, Ngo I, Gueunier-Farret ME, Kleider JP, Yu L, Cabarrocas PR, Perraud S, Rouvière E, Celle C, Mouchet C, Simonato JP - Nanoscale Res Lett (2011)

Bottom Line: Local current mapping shows that the wires have internal microstructures.Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates.The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jose.alvarez@supelec.fr.

ABSTRACT
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

No MeSH data available.


Related in: MedlinePlus

40 × 40 μm2 surface map illustrating the topography (left side) and the local resistance (right side) of horizontal SiNWs grown from In droplets obtained after reduction of ITO.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211155&req=5

Figure 3: 40 × 40 μm2 surface map illustrating the topography (left side) and the local resistance (right side) of horizontal SiNWs grown from In droplets obtained after reduction of ITO.

Mentions: Figure 3 shows a large AFM scan illustrating the topography and electrical image properties of the sample structure based on an ITO pad (bottom of the image) from the border of which in-plane nanowires are distinguishable. In addition, the topography allows it to point out long channels that were dug during the growth of SiNWs. Nevertheless, these long channels are empty and indeed they are not electrically discernable from the insulating a-Si:H layer that surrounds the wires. On the contrary, SiNWs show electrical conductivity when the wires are not broken or disconnected from the ITO pad.


Conductive-probe atomic force microscopy characterization of silicon nanowire.

Alvarez J, Ngo I, Gueunier-Farret ME, Kleider JP, Yu L, Cabarrocas PR, Perraud S, Rouvière E, Celle C, Mouchet C, Simonato JP - Nanoscale Res Lett (2011)

40 × 40 μm2 surface map illustrating the topography (left side) and the local resistance (right side) of horizontal SiNWs grown from In droplets obtained after reduction of ITO.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211155&req=5

Figure 3: 40 × 40 μm2 surface map illustrating the topography (left side) and the local resistance (right side) of horizontal SiNWs grown from In droplets obtained after reduction of ITO.
Mentions: Figure 3 shows a large AFM scan illustrating the topography and electrical image properties of the sample structure based on an ITO pad (bottom of the image) from the border of which in-plane nanowires are distinguishable. In addition, the topography allows it to point out long channels that were dug during the growth of SiNWs. Nevertheless, these long channels are empty and indeed they are not electrically discernable from the insulating a-Si:H layer that surrounds the wires. On the contrary, SiNWs show electrical conductivity when the wires are not broken or disconnected from the ITO pad.

Bottom Line: Local current mapping shows that the wires have internal microstructures.Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates.The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

View Article: PubMed Central - HTML - PubMed

Affiliation: Laboratoire de Génie Electrique de Paris, CNRS UMR 8507, SUPELEC, Univ P-Sud, UPMC Univ Paris 6, 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France. jose.alvarez@supelec.fr.

ABSTRACT
The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated.

No MeSH data available.


Related in: MedlinePlus