Limits...
Polycrystallization effects on the nanoscale electrical properties of high-k dielectrics.

Lanza M, Iglesias V, Porti M, Nafria M, Aymerich X - Nanoscale Res Lett (2011)

Bottom Line: In this study, atomic force microscopy-related techniques have been used to investigate, at the nanoscale, how the polycrystallization of an Al2O3-based gate stack, after a thermal annealing process, affects the variability of its electrical properties.The impact of an electrical stress on the electrical conduction and the charge trapping of amorphous and polycrystalline Al2O3 layers have been also analyzed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Dept, Eng, Electrònica, Edifici Q, Campus UAB, 08193 Bellaterra, Spain. mario.lanza@uab.cat.

ABSTRACT
In this study, atomic force microscopy-related techniques have been used to investigate, at the nanoscale, how the polycrystallization of an Al2O3-based gate stack, after a thermal annealing process, affects the variability of its electrical properties. The impact of an electrical stress on the electrical conduction and the charge trapping of amorphous and polycrystalline Al2O3 layers have been also analyzed.

No MeSH data available.


Related in: MedlinePlus

First scans (a, b) and two consecutive zooms out (b/e, c/f) on amorphous (a, b, c) and polycrystalline (d, e, f) samples. Their sizes are (a, d) 500 nm × 500 nm (b, e) 1 μm × 1 μm and (c, f) 1.5 μm × 1.5 μm. The applied voltage was 11.5 V in all cases. The table shows the evolution of the maximum current driven by the spots S1-S5 and on background areas for both samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211152&req=5

Figure 3: First scans (a, b) and two consecutive zooms out (b/e, c/f) on amorphous (a, b, c) and polycrystalline (d, e, f) samples. Their sizes are (a, d) 500 nm × 500 nm (b, e) 1 μm × 1 μm and (c, f) 1.5 μm × 1.5 μm. The applied voltage was 11.5 V in all cases. The table shows the evolution of the maximum current driven by the spots S1-S5 and on background areas for both samples.

Mentions: In this section, the impact of an electrical stress on the electrical conduction and charge trapping of the Al2O3 layers will be analyzed at the nanoscale. Differences between amorphous and polycrystalline structures will be evaluated. First, the effect of the degradation (before breakdown) induced during a constant voltage scan on a certain area of the oxide will be investigated. Toward this aim, sequences of current images have been collected, on amorphous and polycrystalline Al2O3 samples. First, a 500 nm × 500 nm area was scanned by applying a large enough constant voltage to induce degradation. Afterward, two zoom-outs were done, and larger areas were scanned (1000 × 1000 nm2 and 1500 × 1500 nm2), which included the previously scanned smaller areas. Figure 3 shows a sequence of three images measured on the amorphous (a, b, and c) and polycrystalline (d, e, and f) samples. The first scan corresponds to images (a) and (d) and, the last scan, to images (c) and (f). The sizes of the images are (a and d) 500 nm × 500 nm, (b and e) 1 μm × 1 μm, and (c and f) 1.5 μm × 1.5 μm. The applied voltage was 11.5 V in all the cases. This procedure allows us to compare areas that have been subjected to different stresses--or, in other words--areas that have experienced different degradation levels.


Polycrystallization effects on the nanoscale electrical properties of high-k dielectrics.

Lanza M, Iglesias V, Porti M, Nafria M, Aymerich X - Nanoscale Res Lett (2011)

First scans (a, b) and two consecutive zooms out (b/e, c/f) on amorphous (a, b, c) and polycrystalline (d, e, f) samples. Their sizes are (a, d) 500 nm × 500 nm (b, e) 1 μm × 1 μm and (c, f) 1.5 μm × 1.5 μm. The applied voltage was 11.5 V in all cases. The table shows the evolution of the maximum current driven by the spots S1-S5 and on background areas for both samples.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211152&req=5

Figure 3: First scans (a, b) and two consecutive zooms out (b/e, c/f) on amorphous (a, b, c) and polycrystalline (d, e, f) samples. Their sizes are (a, d) 500 nm × 500 nm (b, e) 1 μm × 1 μm and (c, f) 1.5 μm × 1.5 μm. The applied voltage was 11.5 V in all cases. The table shows the evolution of the maximum current driven by the spots S1-S5 and on background areas for both samples.
Mentions: In this section, the impact of an electrical stress on the electrical conduction and charge trapping of the Al2O3 layers will be analyzed at the nanoscale. Differences between amorphous and polycrystalline structures will be evaluated. First, the effect of the degradation (before breakdown) induced during a constant voltage scan on a certain area of the oxide will be investigated. Toward this aim, sequences of current images have been collected, on amorphous and polycrystalline Al2O3 samples. First, a 500 nm × 500 nm area was scanned by applying a large enough constant voltage to induce degradation. Afterward, two zoom-outs were done, and larger areas were scanned (1000 × 1000 nm2 and 1500 × 1500 nm2), which included the previously scanned smaller areas. Figure 3 shows a sequence of three images measured on the amorphous (a, b, and c) and polycrystalline (d, e, and f) samples. The first scan corresponds to images (a) and (d) and, the last scan, to images (c) and (f). The sizes of the images are (a and d) 500 nm × 500 nm, (b and e) 1 μm × 1 μm, and (c and f) 1.5 μm × 1.5 μm. The applied voltage was 11.5 V in all the cases. This procedure allows us to compare areas that have been subjected to different stresses--or, in other words--areas that have experienced different degradation levels.

Bottom Line: In this study, atomic force microscopy-related techniques have been used to investigate, at the nanoscale, how the polycrystallization of an Al2O3-based gate stack, after a thermal annealing process, affects the variability of its electrical properties.The impact of an electrical stress on the electrical conduction and the charge trapping of amorphous and polycrystalline Al2O3 layers have been also analyzed.

View Article: PubMed Central - HTML - PubMed

Affiliation: Dept, Eng, Electrònica, Edifici Q, Campus UAB, 08193 Bellaterra, Spain. mario.lanza@uab.cat.

ABSTRACT
In this study, atomic force microscopy-related techniques have been used to investigate, at the nanoscale, how the polycrystallization of an Al2O3-based gate stack, after a thermal annealing process, affects the variability of its electrical properties. The impact of an electrical stress on the electrical conduction and the charge trapping of amorphous and polycrystalline Al2O3 layers have been also analyzed.

No MeSH data available.


Related in: MedlinePlus