Limits...
GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus

Room temperature PL spectra taken at different laser spot positions across the sample, showing an approximate 20-nm uncertainty in the peak position.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211148&req=5

Figure 8: Room temperature PL spectra taken at different laser spot positions across the sample, showing an approximate 20-nm uncertainty in the peak position.

Mentions: There is good agreement between the EL and PL peak positions. However, the EL emission is considerably broader than the PL. This observation is attributed to growth non-uniformities and material fluctuations. PL is measured from a small spot (excitation spot size 0.5 mm2), while the EL is collected from the whole sample surface. Therefore, the EL may be expected to be broader if the QWs and/or DBRs width have monolayer fluctuations. In order to prove this, the PL at different spots on the sample (Figure 8) was measured and the reflectivity spectrum for small fluctuations in the thickness of the layers in the cavity of around 2 nm (Figure 9) was calculated. The effect of layer fluctuations is clear.


GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Room temperature PL spectra taken at different laser spot positions across the sample, showing an approximate 20-nm uncertainty in the peak position.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211148&req=5

Figure 8: Room temperature PL spectra taken at different laser spot positions across the sample, showing an approximate 20-nm uncertainty in the peak position.
Mentions: There is good agreement between the EL and PL peak positions. However, the EL emission is considerably broader than the PL. This observation is attributed to growth non-uniformities and material fluctuations. PL is measured from a small spot (excitation spot size 0.5 mm2), while the EL is collected from the whole sample surface. Therefore, the EL may be expected to be broader if the QWs and/or DBRs width have monolayer fluctuations. In order to prove this, the PL at different spots on the sample (Figure 8) was measured and the reflectivity spectrum for small fluctuations in the thickness of the layers in the cavity of around 2 nm (Figure 9) was calculated. The effect of layer fluctuations is clear.

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus