Limits...
GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus

Schematic diagram to illustrate the emission of light under quasi-flat band region condition [16].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211148&req=5

Figure 3: Schematic diagram to illustrate the emission of light under quasi-flat band region condition [16].

Mentions: The operation of Hellish device is based on the longitudinal injection of electron and hole pairs in their respective channels, due to the diffusion of both top contacts through all layers. Without the applied electric field, if the sample is illuminated, photogenerated carriers will eventually recombine radiatively in the QW without drifting laterally in the longitudinal channels. On the other hand, when the device is biased, the energy bands tilt up, with the degree of tilting being proportional to the applied voltage. At low bias, a quasi-flat region is established by the tilted energy bands, and a small number of carriers are then able to drift diagonally into the p-n junction. This is illustrated in Figure 3. With an increase in the electric field, the energy bands will tilt up more, so that more carriers will flow into the active region, enhancing the emitted light. In view of the operational diagram depicted in Figure 3, the application of a negative bias results in a tilting and the diffusion of the holes to the region where electrons are injected, and recombination occurs in the vicinity of the cathode. This allows for spatial confinement and control of the light emission area. Luminescence from the opposite site (anode) appears by inverting the bias polarity [16].


GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Schematic diagram to illustrate the emission of light under quasi-flat band region condition [16].
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211148&req=5

Figure 3: Schematic diagram to illustrate the emission of light under quasi-flat band region condition [16].
Mentions: The operation of Hellish device is based on the longitudinal injection of electron and hole pairs in their respective channels, due to the diffusion of both top contacts through all layers. Without the applied electric field, if the sample is illuminated, photogenerated carriers will eventually recombine radiatively in the QW without drifting laterally in the longitudinal channels. On the other hand, when the device is biased, the energy bands tilt up, with the degree of tilting being proportional to the applied voltage. At low bias, a quasi-flat region is established by the tilted energy bands, and a small number of carriers are then able to drift diagonally into the p-n junction. This is illustrated in Figure 3. With an increase in the electric field, the energy bands will tilt up more, so that more carriers will flow into the active region, enhancing the emitted light. In view of the operational diagram depicted in Figure 3, the application of a negative bias results in a tilting and the diffusion of the holes to the region where electrons are injected, and recombination occurs in the vicinity of the cathode. This allows for spatial confinement and control of the light emission area. Luminescence from the opposite site (anode) appears by inverting the bias polarity [16].

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus