Limits...
GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus

I-V characteristics of simple bar Hellish-VCSOA at 77 and 300 K .
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211148&req=5

Figure 2: I-V characteristics of simple bar Hellish-VCSOA at 77 and 300 K .

Mentions: Ohmic contacts are formed by diffusing Au/GeAu/Ni/Au through all the layers and into the substrate, defining a simple bar-shaped sample, with 1-mm contact separation and 4.5-mm width. This is done by annealing the contacts for 60 s at 430°C. Once fabricated, the device is electrically biased with positive voltage pulses 390-ns duration and a 3-ms repetition rate. The duty cycle is small enough to prevent damage by excessive Joule heating. The applied electric field is varied from 0.01 to 1 kV/cm. Figure 2 shows the current-voltage (I-V) characteristics at 77 and 300 K. The sample exhibits ohmic behaviour at electric fields below 600 and 900 V/cm at 77 and 300 K, respectively. The small deviation from ohmic behaviour is an indication of carrier heating [16,17].


GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

I-V characteristics of simple bar Hellish-VCSOA at 77 and 300 K .
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211148&req=5

Figure 2: I-V characteristics of simple bar Hellish-VCSOA at 77 and 300 K .
Mentions: Ohmic contacts are formed by diffusing Au/GeAu/Ni/Au through all the layers and into the substrate, defining a simple bar-shaped sample, with 1-mm contact separation and 4.5-mm width. This is done by annealing the contacts for 60 s at 430°C. Once fabricated, the device is electrically biased with positive voltage pulses 390-ns duration and a 3-ms repetition rate. The duty cycle is small enough to prevent damage by excessive Joule heating. The applied electric field is varied from 0.01 to 1 kV/cm. Figure 2 shows the current-voltage (I-V) characteristics at 77 and 300 K. The sample exhibits ohmic behaviour at electric fields below 600 and 900 V/cm at 77 and 300 K, respectively. The small deviation from ohmic behaviour is an indication of carrier heating [16,17].

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus