Limits...
GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus

Gain characteristics are measured as a function of applied voltages at T = 300 K.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211148&req=5

Figure 13: Gain characteristics are measured as a function of applied voltages at T = 300 K.

Mentions: This investigation was focussed on the gain at room temperature. The integrated intensities of PL, EL and EPL, together with the calculated SUM (EL + PL) and gain are plotted in Figure 12, as function of applied voltage, up to 800 V/cm, with laser excitation power of 10 mW. Finally, Figure 13 displays the evolution of the gain with applied voltage, which reaches its maximum at around 50 V. It should be noted that the wavelength of the laser (λ = 488 nm) is very different from the cavity resonance position shown in Figure 10. Therefore, most of the excitation is lost through absorption. In order to give a quantitative value to the VCSOA gain, the PL gain is defined as the ratio of the PL peak when the device is electrically pumped to that when the device is not biased. This gain should not be confused with conventional VCSOA gain as ratio of output power to input power.


GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Gain characteristics are measured as a function of applied voltages at T = 300 K.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211148&req=5

Figure 13: Gain characteristics are measured as a function of applied voltages at T = 300 K.
Mentions: This investigation was focussed on the gain at room temperature. The integrated intensities of PL, EL and EPL, together with the calculated SUM (EL + PL) and gain are plotted in Figure 12, as function of applied voltage, up to 800 V/cm, with laser excitation power of 10 mW. Finally, Figure 13 displays the evolution of the gain with applied voltage, which reaches its maximum at around 50 V. It should be noted that the wavelength of the laser (λ = 488 nm) is very different from the cavity resonance position shown in Figure 10. Therefore, most of the excitation is lost through absorption. In order to give a quantitative value to the VCSOA gain, the PL gain is defined as the ratio of the PL peak when the device is electrically pumped to that when the device is not biased. This gain should not be confused with conventional VCSOA gain as ratio of output power to input power.

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus