Limits...
GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus

Continuous line represents the calculated temperature dependence of bandgap energy for the device active area (GaInNAs/GaAs QW) using the BAC model, while the expected cavity resonance position is plotted with a dashed line and finally the scattered points represent the experimental data for PL (asterisks) and EL (squares).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211148&req=5

Figure 10: Continuous line represents the calculated temperature dependence of bandgap energy for the device active area (GaInNAs/GaAs QW) using the BAC model, while the expected cavity resonance position is plotted with a dashed line and finally the scattered points represent the experimental data for PL (asterisks) and EL (squares).

Mentions: The temperature dependence of EL and PL peaks and the cavity resonance are plotted in Figure 10, together with the active material bandgap energy curve [18]. The behaviour differs extremely from the change of the GaInNAs/GaAs bandgap energy with temperature. Theoretically, a red shift of the active material peak wavelength at a rate of 0.38 nm/K was predicted, while the resonance cavity moves with temperature at 0.18 nm/K. At these rates, the optimum operating temperature for this device will be at around 220 K, where the maximum peak material gain coincides with the DBR resonance cavity position.


GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation.

Chaqmaqchee FA, Mazzucato S, Oduncuoglu M, Balkan N, Sun Y, Gunes M, Hugues M, Hopkinson M - Nanoscale Res Lett (2011)

Continuous line represents the calculated temperature dependence of bandgap energy for the device active area (GaInNAs/GaAs QW) using the BAC model, while the expected cavity resonance position is plotted with a dashed line and finally the scattered points represent the experimental data for PL (asterisks) and EL (squares).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211148&req=5

Figure 10: Continuous line represents the calculated temperature dependence of bandgap energy for the device active area (GaInNAs/GaAs QW) using the BAC model, while the expected cavity resonance position is plotted with a dashed line and finally the scattered points represent the experimental data for PL (asterisks) and EL (squares).
Mentions: The temperature dependence of EL and PL peaks and the cavity resonance are plotted in Figure 10, together with the active material bandgap energy curve [18]. The behaviour differs extremely from the change of the GaInNAs/GaAs bandgap energy with temperature. Theoretically, a red shift of the active material peak wavelength at a rate of 0.38 nm/K was predicted, while the resonance cavity moves with temperature at 0.18 nm/K. At these rates, the optimum operating temperature for this device will be at around 220 K, where the maximum peak material gain coincides with the DBR resonance cavity position.

Bottom Line: It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias.Cavity resonance and gain peak curves have been calculated at different temperatures.Good agreement between experimental and theoretical results has been obtained.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK. faicha@essex.ac.uk.

ABSTRACT
Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained.

No MeSH data available.


Related in: MedlinePlus