Limits...
Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization.

Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C - Nanoscale Res Lett (2011)

Bottom Line: Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis.Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio.In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

View Article: PubMed Central - HTML - PubMed

Affiliation: ENEA (Italian National Agency for New Technologies, Energy and the Sustainable Economic Development), UTTMATB (Technical Unit of Materials Technologies - Brindisi), Brindisi Research Centre, S,S, 7 Appia km, 706, 72100 Brindisi, Italy. floriana.vitale@enea.it.

ABSTRACT
Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

No MeSH data available.


Related in: MedlinePlus

Bright field TEM images of sample B. The images (a) and (b) are taken at low magnification and from two different regions of the sample in order to get an idea on how nanoparticles aggregate and form chains and develop a 3D network. The image (c) is taken in high resolution mode and evidences the spherical shape of the particles with average and uniform size of Ø = 3 nm and their dense packing.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211147&req=5

Figure 9: Bright field TEM images of sample B. The images (a) and (b) are taken at low magnification and from two different regions of the sample in order to get an idea on how nanoparticles aggregate and form chains and develop a 3D network. The image (c) is taken in high resolution mode and evidences the spherical shape of the particles with average and uniform size of Ø = 3 nm and their dense packing.

Mentions: TEM investigations were performed on samples obtained by casting a drop of the solution on a grid. Since we can expect that a three-dimensional network of gold nanoparticles is formed, it is very important to put a "thin" film, transparent to the electron beam, on the grid and special care was dedicated to this topic. The TEM micrographs, images obtained at different magnifications (Figure 9a,b), show indeed a well pronounced three-dimensional network. At high magnification, individual nanoclusters can be observed and the distance between the gold nanoparticles seems to be very regular (Figure 9c), as expected by the bi-functional linkage. It can be estimated that the average size of the nanoparticles corresponds to a value of about 3 nm (considering that the nanoparticles are almost spherical). These data are in good agreement with the XRD measurements. The high-resolution image suggests also that the particle distribution size is quite narrow (Figure 9c). These results show that a three-dimensional network of gold nanoclusters has been obtained in the case of the bi-functional thiol molecule, in analogy to literature reports [29]: size-uniform spherical assemblies of 5-8 nm gold colloids in toluene have been obtained by cross linking the colloidal particles using alkanedithiols.


Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization.

Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C - Nanoscale Res Lett (2011)

Bright field TEM images of sample B. The images (a) and (b) are taken at low magnification and from two different regions of the sample in order to get an idea on how nanoparticles aggregate and form chains and develop a 3D network. The image (c) is taken in high resolution mode and evidences the spherical shape of the particles with average and uniform size of Ø = 3 nm and their dense packing.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211147&req=5

Figure 9: Bright field TEM images of sample B. The images (a) and (b) are taken at low magnification and from two different regions of the sample in order to get an idea on how nanoparticles aggregate and form chains and develop a 3D network. The image (c) is taken in high resolution mode and evidences the spherical shape of the particles with average and uniform size of Ø = 3 nm and their dense packing.
Mentions: TEM investigations were performed on samples obtained by casting a drop of the solution on a grid. Since we can expect that a three-dimensional network of gold nanoparticles is formed, it is very important to put a "thin" film, transparent to the electron beam, on the grid and special care was dedicated to this topic. The TEM micrographs, images obtained at different magnifications (Figure 9a,b), show indeed a well pronounced three-dimensional network. At high magnification, individual nanoclusters can be observed and the distance between the gold nanoparticles seems to be very regular (Figure 9c), as expected by the bi-functional linkage. It can be estimated that the average size of the nanoparticles corresponds to a value of about 3 nm (considering that the nanoparticles are almost spherical). These data are in good agreement with the XRD measurements. The high-resolution image suggests also that the particle distribution size is quite narrow (Figure 9c). These results show that a three-dimensional network of gold nanoclusters has been obtained in the case of the bi-functional thiol molecule, in analogy to literature reports [29]: size-uniform spherical assemblies of 5-8 nm gold colloids in toluene have been obtained by cross linking the colloidal particles using alkanedithiols.

Bottom Line: Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis.Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio.In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

View Article: PubMed Central - HTML - PubMed

Affiliation: ENEA (Italian National Agency for New Technologies, Energy and the Sustainable Economic Development), UTTMATB (Technical Unit of Materials Technologies - Brindisi), Brindisi Research Centre, S,S, 7 Appia km, 706, 72100 Brindisi, Italy. floriana.vitale@enea.it.

ABSTRACT
Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

No MeSH data available.


Related in: MedlinePlus