Limits...
Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization.

Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C - Nanoscale Res Lett (2011)

Bottom Line: Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis.Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio.In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

View Article: PubMed Central - HTML - PubMed

Affiliation: ENEA (Italian National Agency for New Technologies, Energy and the Sustainable Economic Development), UTTMATB (Technical Unit of Materials Technologies - Brindisi), Brindisi Research Centre, S,S, 7 Appia km, 706, 72100 Brindisi, Italy. floriana.vitale@enea.it.

ABSTRACT
Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

No MeSH data available.


Bright field TEM images of benzylthiol-gold nanoparticles prepared with Au/S molar ratio of 0.75:1 (sample A1). The inset shows a high-resolution image of a single Au nanoparticle of cuboctahedral structure (Ø = 3 nm); the (200) lattice fringes are well observed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211147&req=5

Figure 5: Bright field TEM images of benzylthiol-gold nanoparticles prepared with Au/S molar ratio of 0.75:1 (sample A1). The inset shows a high-resolution image of a single Au nanoparticle of cuboctahedral structure (Ø = 3 nm); the (200) lattice fringes are well observed.

Mentions: In order to deeply characterize BzT-stabilized Au nanoparticles, TEM, XRD, and XPS analyses were carried out. Figure 5 shows the TEM micrograph of the sample A1, representative of the samples obtained with two phases synthesis, prepared with a Au:S molar ratio 0.75:1; benzylthiol-capped gold nanoparticles are well separated and no aggregation is observed. The nanoclusters exhibit a spherical shape, and the size distribution is narrow showing a mean size of 2.8 ± 0.5 nm. The inset of Figure 3 shows a high-resolution image of a single Au nanocrystal (∅ = 3 nm) of spherical shape. Here, the (200) lattice fringes are well observed demonstrating the crystalline structure of the particle. In addition, no twinning of the crystallite is observed indicating that the nanocrystal is a single crystal (monocrystal).


Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization.

Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C - Nanoscale Res Lett (2011)

Bright field TEM images of benzylthiol-gold nanoparticles prepared with Au/S molar ratio of 0.75:1 (sample A1). The inset shows a high-resolution image of a single Au nanoparticle of cuboctahedral structure (Ø = 3 nm); the (200) lattice fringes are well observed.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211147&req=5

Figure 5: Bright field TEM images of benzylthiol-gold nanoparticles prepared with Au/S molar ratio of 0.75:1 (sample A1). The inset shows a high-resolution image of a single Au nanoparticle of cuboctahedral structure (Ø = 3 nm); the (200) lattice fringes are well observed.
Mentions: In order to deeply characterize BzT-stabilized Au nanoparticles, TEM, XRD, and XPS analyses were carried out. Figure 5 shows the TEM micrograph of the sample A1, representative of the samples obtained with two phases synthesis, prepared with a Au:S molar ratio 0.75:1; benzylthiol-capped gold nanoparticles are well separated and no aggregation is observed. The nanoclusters exhibit a spherical shape, and the size distribution is narrow showing a mean size of 2.8 ± 0.5 nm. The inset of Figure 3 shows a high-resolution image of a single Au nanocrystal (∅ = 3 nm) of spherical shape. Here, the (200) lattice fringes are well observed demonstrating the crystalline structure of the particle. In addition, no twinning of the crystallite is observed indicating that the nanocrystal is a single crystal (monocrystal).

Bottom Line: Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis.Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio.In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

View Article: PubMed Central - HTML - PubMed

Affiliation: ENEA (Italian National Agency for New Technologies, Energy and the Sustainable Economic Development), UTTMATB (Technical Unit of Materials Technologies - Brindisi), Brindisi Research Centre, S,S, 7 Appia km, 706, 72100 Brindisi, Italy. floriana.vitale@enea.it.

ABSTRACT
Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

No MeSH data available.