Limits...
Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization.

Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C - Nanoscale Res Lett (2011)

Bottom Line: Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis.Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio.In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

View Article: PubMed Central - HTML - PubMed

Affiliation: ENEA (Italian National Agency for New Technologies, Energy and the Sustainable Economic Development), UTTMATB (Technical Unit of Materials Technologies - Brindisi), Brindisi Research Centre, S,S, 7 Appia km, 706, 72100 Brindisi, Italy. floriana.vitale@enea.it.

ABSTRACT
Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

No MeSH data available.


Scheme 2. Synthetic scheme of 1,4-benzenedimethanethiol-capped gold nanoparticles (sample B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211147&req=5

Figure 2: Scheme 2. Synthetic scheme of 1,4-benzenedimethanethiol-capped gold nanoparticles (sample B).

Mentions: (iii) The synthesis of gold nanoparticles passivated by BDMT was performed using the Au/S ratio 0.75:1, sample B. HAuCl4·3H2O (tetrachloroauric acid, 0.175 g, 0.44 mmol) was dissolved in 15 ml of H2O and added to a solution of BDMT (0.999 g, 0.58 mmol) in 40 ml of CH2Cl2. The aqueous phase was transferred into CH2Cl2 upon addition of 0.800 g of TOAB, and the mixture was subjected to vigorous stirring. The gold was reduced upon addition of 11.15 ml of a 0.4 M aqueous solution of NaBH4, added over a period of 1 min to the vigorously stirring solution. The solution was left stirring for a further 3 h. The solvent was then removed in vacuum, the product was dried in a desiccator overnight and recovered without any further purification because a film over Celite was formed that could not be removed with CH2Cl2. The reaction scheme leading to the 1,4-benzenedimethanethiol-capped gold nanoparticles is shown in Scheme 2 (Figure 2, sample B; here only two nanoclusters linked by one bi-functional thiol molecule are shown).


Mono- and bi-functional arenethiols as surfactants for gold nanoparticles: synthesis and characterization.

Vitale F, Fratoddi I, Battocchio C, Piscopiello E, Tapfer L, Russo MV, Polzonetti G, Giannini C - Nanoscale Res Lett (2011)

Scheme 2. Synthetic scheme of 1,4-benzenedimethanethiol-capped gold nanoparticles (sample B).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211147&req=5

Figure 2: Scheme 2. Synthetic scheme of 1,4-benzenedimethanethiol-capped gold nanoparticles (sample B).
Mentions: (iii) The synthesis of gold nanoparticles passivated by BDMT was performed using the Au/S ratio 0.75:1, sample B. HAuCl4·3H2O (tetrachloroauric acid, 0.175 g, 0.44 mmol) was dissolved in 15 ml of H2O and added to a solution of BDMT (0.999 g, 0.58 mmol) in 40 ml of CH2Cl2. The aqueous phase was transferred into CH2Cl2 upon addition of 0.800 g of TOAB, and the mixture was subjected to vigorous stirring. The gold was reduced upon addition of 11.15 ml of a 0.4 M aqueous solution of NaBH4, added over a period of 1 min to the vigorously stirring solution. The solution was left stirring for a further 3 h. The solvent was then removed in vacuum, the product was dried in a desiccator overnight and recovered without any further purification because a film over Celite was formed that could not be removed with CH2Cl2. The reaction scheme leading to the 1,4-benzenedimethanethiol-capped gold nanoparticles is shown in Scheme 2 (Figure 2, sample B; here only two nanoclusters linked by one bi-functional thiol molecule are shown).

Bottom Line: Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis.Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio.In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

View Article: PubMed Central - HTML - PubMed

Affiliation: ENEA (Italian National Agency for New Technologies, Energy and the Sustainable Economic Development), UTTMATB (Technical Unit of Materials Technologies - Brindisi), Brindisi Research Centre, S,S, 7 Appia km, 706, 72100 Brindisi, Italy. floriana.vitale@enea.it.

ABSTRACT
Stable gold nanoparticles stabilized by different mono and bi-functional arenethiols, namely, benzylthiol and 1,4-benzenedimethanethiol, have been prepared by using a modified Brust's two-phase synthesis. The size, shape, and crystalline structure of the gold nanoparticles have been determined by high-resolution electron microscopy and full-pattern X-ray powder diffraction analyses. Nanocrystals diameters have been tuned in the range 2 ÷ 9 nm by a proper variation of Au/S molar ratio. The chemical composition of gold nanoparticles and their interaction with thiols have been investigated by X-ray photoelectron spectroscopy. In particular, the formation of networks has been observed with interconnected gold nanoparticles containing 1,4-benzenedimethanethiol as ligand.

No MeSH data available.