Limits...
Assessment of Influence of Magnetic Forces on Aggregation of Zero-valent Iron Nanoparticles

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Aggregation of zero-valent nanoparticles in groundwater is influenced by several physical phenomena. The article shortly introduces preceding works in modeling of aggregation of small particles including influence of sedimentation, velocity profile of water, heat fluctuations, and surface electric charge. A brief description of inclusion of magnetic forces into the model of aggregation follows. Rate of influence of the magnetic forces on the aggregation depends on the magnitude of magnetization of the particles, radius of nanoparticles, size of the aggregates, and their concentration in the solution. Presented results show that the magnetic forces have significant influence on aggregation especially of the smallest iron particles.

No MeSH data available.


Effective range of the magnetic forces of chosen aggregates. The dashed line characterizes the effective ranges for the interaction of aggregates interacting with a single nanoparticle. The solid line characterizes the effective ranges for the interaction of two aggregates of the same size. The graph is plotted for the magnetic polarization 170 emu g-1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3211143&req=5

Figure 4: Effective range of the magnetic forces of chosen aggregates. The dashed line characterizes the effective ranges for the interaction of aggregates interacting with a single nanoparticle. The solid line characterizes the effective ranges for the interaction of two aggregates of the same size. The graph is plotted for the magnetic polarization 170 emu g-1.

Mentions: In Figure 4, the dashed line characterizes the effective ranges for interaction of chosen aggregates interacting with a single nanoparticle. The solid line in the graph characterizes the effective range for the interaction of two aggregates of the same size. The absolute value of the magnetic force and consequently also effective range quadratically depends on the magnitude of the magnetic polarization. The graph is plotted for the magnetic polarization 170 emu g-1. More important information than absolute values is the trends of the lines.


Assessment of Influence of Magnetic Forces on Aggregation of Zero-valent Iron Nanoparticles
Effective range of the magnetic forces of chosen aggregates. The dashed line characterizes the effective ranges for the interaction of aggregates interacting with a single nanoparticle. The solid line characterizes the effective ranges for the interaction of two aggregates of the same size. The graph is plotted for the magnetic polarization 170 emu g-1.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3211143&req=5

Figure 4: Effective range of the magnetic forces of chosen aggregates. The dashed line characterizes the effective ranges for the interaction of aggregates interacting with a single nanoparticle. The solid line characterizes the effective ranges for the interaction of two aggregates of the same size. The graph is plotted for the magnetic polarization 170 emu g-1.
Mentions: In Figure 4, the dashed line characterizes the effective ranges for interaction of chosen aggregates interacting with a single nanoparticle. The solid line in the graph characterizes the effective range for the interaction of two aggregates of the same size. The absolute value of the magnetic force and consequently also effective range quadratically depends on the magnitude of the magnetic polarization. The graph is plotted for the magnetic polarization 170 emu g-1. More important information than absolute values is the trends of the lines.

View Article: PubMed Central - HTML - PubMed

ABSTRACT

Aggregation of zero-valent nanoparticles in groundwater is influenced by several physical phenomena. The article shortly introduces preceding works in modeling of aggregation of small particles including influence of sedimentation, velocity profile of water, heat fluctuations, and surface electric charge. A brief description of inclusion of magnetic forces into the model of aggregation follows. Rate of influence of the magnetic forces on the aggregation depends on the magnitude of magnetization of the particles, radius of nanoparticles, size of the aggregates, and their concentration in the solution. Presented results show that the magnetic forces have significant influence on aggregation especially of the smallest iron particles.

No MeSH data available.