Limits...
Improved curve fits to summary survival data: application to economic evaluation of health technologies.

Hoyle MW, Henley W - BMC Med Res Methodol (2011)

Bottom Line: Mean costs and quality-adjusted-life-years are central to the cost-effectiveness of health technologies.They are often calculated from time to event curves such as for overall survival and progression-free survival.However, such data are usually not available to independent researchers.

View Article: PubMed Central - HTML - PubMed

Affiliation: Peninsula College of Medicine and Dentistry, Veysey Building, Salmon Pool Lane, Exeter, EX2 4SG, UK. martin.hoyle@pms.ac.uk

ABSTRACT

Background: Mean costs and quality-adjusted-life-years are central to the cost-effectiveness of health technologies. They are often calculated from time to event curves such as for overall survival and progression-free survival. Ideally, estimates should be obtained from fitting an appropriate parametric model to individual patient data. However, such data are usually not available to independent researchers. Instead, it is common to fit curves to summary Kaplan-Meier graphs, either by regression or by least squares. Here, a more accurate method of fitting survival curves to summary survival data is described.

Methods: First, the underlying individual patient data are estimated from the numbers of patients at risk (or other published information) and from the Kaplan-Meier graph. The survival curve can then be fit by maximum likelihood estimation or other suitable approach applied to the estimated individual patient data. The accuracy of the proposed method was compared against that of the regression and least squares methods and the use of the actual individual patient data by simulating the survival of patients in many thousands of trials. The cost-effectiveness of sunitinib versus interferon-alpha for metastatic renal cell carcinoma, as recently calculated for NICE in the UK, is reassessed under several methods, including the proposed method.

Results: Simulation shows that the proposed method gives more accurate curve fits than the traditional methods under realistic scenarios. Furthermore, the proposed method achieves similar bias and mean square error when estimating the mean survival time to that achieved by analysis of the complete underlying individual patient data. The proposed method also naturally yields estimates of the uncertainty in curve fits, which are not available using the traditional methods. The cost-effectiveness of sunitinib versus interferon-alpha is substantially altered when the proposed method is used.

Conclusions: The method is recommended for cost-effectiveness analysis when only summary survival data are available. An easy-to-use Excel spreadsheet to implement the method is provided.

Show MeSH

Related in: MedlinePlus

Simulation results for proposed method vs. traditional methods: 100 patients per trial. For 1,000 simulated trials, (a) mean(mean time) and median(mean time) and (b) mean(error in mean time) and median(error in mean time) for trials with 100 patients for the proposed method and for other established methods. The population mean time is 10, as indicated by the horizontal lines. Bars occasionally extend above 30.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198983&req=5

Figure 5: Simulation results for proposed method vs. traditional methods: 100 patients per trial. For 1,000 simulated trials, (a) mean(mean time) and median(mean time) and (b) mean(error in mean time) and median(error in mean time) for trials with 100 patients for the proposed method and for other established methods. The population mean time is 10, as indicated by the horizontal lines. Bars occasionally extend above 30.

Mentions: Fourth, the accuracy of the proposed method is compared to three alternative established methods for trials of 100 patients (Figure 5) and 500 patients (Figure 6). First, considering 100 patients, it is immediately obvious that the mean of the estimates of the mean time for the regression and least methods are vastly over-estimated when we allow for extra censoring, although the median of the mean estimates are very accurate (Figure 5). This is because both methods occasionally greatly over-estimate the mean time when there are relatively few events at long follow up times, and because the methods give equal weight to the Kaplan-Meier curve at long and short follow up times (Figure 7). Neither the proposed method nor fitting survival curves directly to the underlying IPD suffer from this problem.


Improved curve fits to summary survival data: application to economic evaluation of health technologies.

Hoyle MW, Henley W - BMC Med Res Methodol (2011)

Simulation results for proposed method vs. traditional methods: 100 patients per trial. For 1,000 simulated trials, (a) mean(mean time) and median(mean time) and (b) mean(error in mean time) and median(error in mean time) for trials with 100 patients for the proposed method and for other established methods. The population mean time is 10, as indicated by the horizontal lines. Bars occasionally extend above 30.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198983&req=5

Figure 5: Simulation results for proposed method vs. traditional methods: 100 patients per trial. For 1,000 simulated trials, (a) mean(mean time) and median(mean time) and (b) mean(error in mean time) and median(error in mean time) for trials with 100 patients for the proposed method and for other established methods. The population mean time is 10, as indicated by the horizontal lines. Bars occasionally extend above 30.
Mentions: Fourth, the accuracy of the proposed method is compared to three alternative established methods for trials of 100 patients (Figure 5) and 500 patients (Figure 6). First, considering 100 patients, it is immediately obvious that the mean of the estimates of the mean time for the regression and least methods are vastly over-estimated when we allow for extra censoring, although the median of the mean estimates are very accurate (Figure 5). This is because both methods occasionally greatly over-estimate the mean time when there are relatively few events at long follow up times, and because the methods give equal weight to the Kaplan-Meier curve at long and short follow up times (Figure 7). Neither the proposed method nor fitting survival curves directly to the underlying IPD suffer from this problem.

Bottom Line: Mean costs and quality-adjusted-life-years are central to the cost-effectiveness of health technologies.They are often calculated from time to event curves such as for overall survival and progression-free survival.However, such data are usually not available to independent researchers.

View Article: PubMed Central - HTML - PubMed

Affiliation: Peninsula College of Medicine and Dentistry, Veysey Building, Salmon Pool Lane, Exeter, EX2 4SG, UK. martin.hoyle@pms.ac.uk

ABSTRACT

Background: Mean costs and quality-adjusted-life-years are central to the cost-effectiveness of health technologies. They are often calculated from time to event curves such as for overall survival and progression-free survival. Ideally, estimates should be obtained from fitting an appropriate parametric model to individual patient data. However, such data are usually not available to independent researchers. Instead, it is common to fit curves to summary Kaplan-Meier graphs, either by regression or by least squares. Here, a more accurate method of fitting survival curves to summary survival data is described.

Methods: First, the underlying individual patient data are estimated from the numbers of patients at risk (or other published information) and from the Kaplan-Meier graph. The survival curve can then be fit by maximum likelihood estimation or other suitable approach applied to the estimated individual patient data. The accuracy of the proposed method was compared against that of the regression and least squares methods and the use of the actual individual patient data by simulating the survival of patients in many thousands of trials. The cost-effectiveness of sunitinib versus interferon-alpha for metastatic renal cell carcinoma, as recently calculated for NICE in the UK, is reassessed under several methods, including the proposed method.

Results: Simulation shows that the proposed method gives more accurate curve fits than the traditional methods under realistic scenarios. Furthermore, the proposed method achieves similar bias and mean square error when estimating the mean survival time to that achieved by analysis of the complete underlying individual patient data. The proposed method also naturally yields estimates of the uncertainty in curve fits, which are not available using the traditional methods. The cost-effectiveness of sunitinib versus interferon-alpha is substantially altered when the proposed method is used.

Conclusions: The method is recommended for cost-effectiveness analysis when only summary survival data are available. An easy-to-use Excel spreadsheet to implement the method is provided.

Show MeSH
Related in: MedlinePlus