Limits...
Y-chromosome phylogeny in the evolutionary net of chamois (genus Rupicapra).

Pérez T, Hammer SE, Albornoz J, Domínguez A - BMC Evol. Biol. (2011)

Bottom Line: The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia) were also determined and compared with the sequences of Bovidae available in the GenBank.The diversity of Y-chromosomes in chamois is very low.The differences in patterns of variation among Y-chromosome, mtDNA and biparental microsatellites reflect the evolutionary characteristics of the different markers as well as the effects of sex-biased dispersal and species phylogeography.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Biología Funcional, Genética, Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain.

ABSTRACT

Background: The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. The study of matrilineal mitochondrial DNA (mtDNA) and biparentally inherited microsatellites showed that the two species are paraphyletic and indicated alternate events of population contraction and dispersal-hybridization in the diversification of chamois. Here we investigate the pattern of variation of the Y-chromosome to obtain information on the patrilineal phylogenetic position of the genus Rupicapra and on the male-specific dispersal of chamois across Europe.

Results: We analyzed the Y-chromosome of 87 males covering the distribution range of the Rupicapra genus. We sequenced a fragment of the SRY gene promoter and characterized the male specific microsatellites UMN2303 and SRYM18. The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia) were also determined and compared with the sequences of Bovidae available in the GenBank. Phylogenetic analysis of the alignment showed the clustering of Rupicapra with Capra and the Ammotragus sequence obtained in this study, different from the previously reported sequence of Ammotragus which groups with Ovis. Within Rupicapra, the combined data define 10 Y-chromosome haplotypes forming two haplogroups, which concur with taxonomic classification, instead of the three clades formed for mtDNA and nuclear microsatellites. The variation shows a west-to-east geographical cline of ancestral to derived alleles.

Conclusions: The phylogeny of the SRY-promoter shows an association between Rupicapra and Capra. The position of Ammotragus needs a reinvestigation. The study of ancestral and derived characters in the Y-chromosome suggests that, contrary to the presumed Asian origin, the paternal lineage of chamois originated in the Mediterranean, most probably in the Iberian Peninsula, and dispersed eastwards through serial funding events during the glacial-interglacial cycles of the Quaternary. The diversity of Y-chromosomes in chamois is very low. The differences in patterns of variation among Y-chromosome, mtDNA and biparental microsatellites reflect the evolutionary characteristics of the different markers as well as the effects of sex-biased dispersal and species phylogeography.

Show MeSH

Related in: MedlinePlus

Network of Y-chromosome haplotypes. Median-joining network for the Y-chromosome haplotypes constructed using variation at the SRY promoter sequence and at the microsatellites UMN2303 (number of pentanucleotide repeats) and SRYM18 (one SNP, number of trinucleotide repeats and number of mononucleotide repeats). The size of pie areas corresponds to haplotypic frequencies and the proportion accounted for by the different subspecies is represented in different colors as in Figure 1. Different types of mutations in each branch are represented by different symbols (white square: SNP; black squares with a number inside: microsatellites with mononucleotide [1], trinucleotide [3] and pentanucleotide [5] motifs). The network is represented over a map according to the approximate geographical origin of the haplotypes. Branch lengths are not scaled.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198967&req=5

Figure 3: Network of Y-chromosome haplotypes. Median-joining network for the Y-chromosome haplotypes constructed using variation at the SRY promoter sequence and at the microsatellites UMN2303 (number of pentanucleotide repeats) and SRYM18 (one SNP, number of trinucleotide repeats and number of mononucleotide repeats). The size of pie areas corresponds to haplotypic frequencies and the proportion accounted for by the different subspecies is represented in different colors as in Figure 1. Different types of mutations in each branch are represented by different symbols (white square: SNP; black squares with a number inside: microsatellites with mononucleotide [1], trinucleotide [3] and pentanucleotide [5] motifs). The network is represented over a map according to the approximate geographical origin of the haplotypes. Branch lengths are not scaled.

Mentions: The network of haplotypes (Figure 3) revealed two haplogroups that concur with the taxonomy of chamois. These two clades are separated by two nucleotide substitutions (one in the SRY promoter and one in the SRYM18 microsatellite) and a mean distance of 2.11 microsatellite repeats. The connections between haplotypes show a strong geographic signal with links always between neighboring populations. The same network is obtained whether or not the nucleotide substitutions are included.


Y-chromosome phylogeny in the evolutionary net of chamois (genus Rupicapra).

Pérez T, Hammer SE, Albornoz J, Domínguez A - BMC Evol. Biol. (2011)

Network of Y-chromosome haplotypes. Median-joining network for the Y-chromosome haplotypes constructed using variation at the SRY promoter sequence and at the microsatellites UMN2303 (number of pentanucleotide repeats) and SRYM18 (one SNP, number of trinucleotide repeats and number of mononucleotide repeats). The size of pie areas corresponds to haplotypic frequencies and the proportion accounted for by the different subspecies is represented in different colors as in Figure 1. Different types of mutations in each branch are represented by different symbols (white square: SNP; black squares with a number inside: microsatellites with mononucleotide [1], trinucleotide [3] and pentanucleotide [5] motifs). The network is represented over a map according to the approximate geographical origin of the haplotypes. Branch lengths are not scaled.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198967&req=5

Figure 3: Network of Y-chromosome haplotypes. Median-joining network for the Y-chromosome haplotypes constructed using variation at the SRY promoter sequence and at the microsatellites UMN2303 (number of pentanucleotide repeats) and SRYM18 (one SNP, number of trinucleotide repeats and number of mononucleotide repeats). The size of pie areas corresponds to haplotypic frequencies and the proportion accounted for by the different subspecies is represented in different colors as in Figure 1. Different types of mutations in each branch are represented by different symbols (white square: SNP; black squares with a number inside: microsatellites with mononucleotide [1], trinucleotide [3] and pentanucleotide [5] motifs). The network is represented over a map according to the approximate geographical origin of the haplotypes. Branch lengths are not scaled.
Mentions: The network of haplotypes (Figure 3) revealed two haplogroups that concur with the taxonomy of chamois. These two clades are separated by two nucleotide substitutions (one in the SRY promoter and one in the SRYM18 microsatellite) and a mean distance of 2.11 microsatellite repeats. The connections between haplotypes show a strong geographic signal with links always between neighboring populations. The same network is obtained whether or not the nucleotide substitutions are included.

Bottom Line: The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia) were also determined and compared with the sequences of Bovidae available in the GenBank.The diversity of Y-chromosomes in chamois is very low.The differences in patterns of variation among Y-chromosome, mtDNA and biparental microsatellites reflect the evolutionary characteristics of the different markers as well as the effects of sex-biased dispersal and species phylogeography.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Biología Funcional, Genética, Universidad de Oviedo, Julián Clavería 6, 33006 Oviedo, Spain.

ABSTRACT

Background: The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. The study of matrilineal mitochondrial DNA (mtDNA) and biparentally inherited microsatellites showed that the two species are paraphyletic and indicated alternate events of population contraction and dispersal-hybridization in the diversification of chamois. Here we investigate the pattern of variation of the Y-chromosome to obtain information on the patrilineal phylogenetic position of the genus Rupicapra and on the male-specific dispersal of chamois across Europe.

Results: We analyzed the Y-chromosome of 87 males covering the distribution range of the Rupicapra genus. We sequenced a fragment of the SRY gene promoter and characterized the male specific microsatellites UMN2303 and SRYM18. The SRY promoter sequences of two samples of Barbary sheep (Ammotragus lervia) were also determined and compared with the sequences of Bovidae available in the GenBank. Phylogenetic analysis of the alignment showed the clustering of Rupicapra with Capra and the Ammotragus sequence obtained in this study, different from the previously reported sequence of Ammotragus which groups with Ovis. Within Rupicapra, the combined data define 10 Y-chromosome haplotypes forming two haplogroups, which concur with taxonomic classification, instead of the three clades formed for mtDNA and nuclear microsatellites. The variation shows a west-to-east geographical cline of ancestral to derived alleles.

Conclusions: The phylogeny of the SRY-promoter shows an association between Rupicapra and Capra. The position of Ammotragus needs a reinvestigation. The study of ancestral and derived characters in the Y-chromosome suggests that, contrary to the presumed Asian origin, the paternal lineage of chamois originated in the Mediterranean, most probably in the Iberian Peninsula, and dispersed eastwards through serial funding events during the glacial-interglacial cycles of the Quaternary. The diversity of Y-chromosomes in chamois is very low. The differences in patterns of variation among Y-chromosome, mtDNA and biparental microsatellites reflect the evolutionary characteristics of the different markers as well as the effects of sex-biased dispersal and species phylogeography.

Show MeSH
Related in: MedlinePlus