Limits...
Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey.

Pajunen P, Kotronen A, Korpi-Hyövälti E, Keinänen-Kiukaanniemi S, Oksa H, Niskanen L, Saaristo T, Saltevo JT, Sundvall J, Vanhala M, Uusitupa M, Peltonen M - BMC Public Health (2011)

Bottom Line: MetS-BMI interaction was significant (p < 0.001) also for the Framingham 10 year CVD risk score, NAFLD score and estimated liver fat %, indicating greater effect of increasing BMI in participants with MetS compared to participants without MetS.Undetected Type 2 diabetes was more prevalent among those with MetS irrespective of the BMI class and increasing BMI had a significantly greater effect on estimates of liver fat and future CVD risk among those with MetS compared with participants without MetS.A healthy obese phenotype was associated with a better metabolic profile than observed in normal weight individuals with MetS.

View Article: PubMed Central - HTML - PubMed

Affiliation: Diabetes Prevention Unit, Division of Welfare and Health Promotion, National Institute for Health and Welfare, Helsinki, Finland. pia.pajunen@thl.fi

ABSTRACT

Background: The aim of this work was to examine the prevalence of different metabolical phenotypes of obesity, and to analyze, by using different risk scores, how the metabolic syndrome (MetS) definition discriminates between unhealthy and healthy metabolic phenotypes in different obesity classes.

Methods: The Finnish type 2 diabetes (FIN-D2D) survey, a part of the larger implementation study, was carried out in 2007. The present cross-sectional analysis comprises 2,849 individuals aged 45-74 years. The MetS was defined with the new Harmonization definition. Cardiovascular risk was estimated with the Framingham and SCORE risk scores. Diabetes risk was assessed with the FINDRISK score. Non-alcoholic fatty liver disease (NAFLD) was estimated with the NAFLD score. Participants with and without MetS were classified in different weight categories and analysis of regression models were used to test the linear trend between body mass index (BMI) and various characteristics in individuals with and without MetS; and interaction between BMI and MetS.

Results: A metabolically healthy but obese phenotype was observed in 9.2% of obese men and in 16.4% of obese women. The MetS-BMI interaction was significant for fasting glucose, 2-hour plasma glucose, fasting plasma insulin and insulin resistance (HOMA-IR)(p < 0.001 for all). The prevalence of total diabetes (detected prior to or during survey) was 37.0% in obese individuals with MetS and 4.3% in obese individuals without MetS (p < 0.001). MetS-BMI interaction was significant (p < 0.001) also for the Framingham 10 year CVD risk score, NAFLD score and estimated liver fat %, indicating greater effect of increasing BMI in participants with MetS compared to participants without MetS. The metabolically healthy but obese individuals had lower 2-hour postload glucose levels (p = 0.0030), lower NAFLD scores (p < 0.001) and lower CVD risk scores (Framingham, p < 0.001; SCORE, p = 0.002) than normal weight individuals with MetS.

Conclusions: Undetected Type 2 diabetes was more prevalent among those with MetS irrespective of the BMI class and increasing BMI had a significantly greater effect on estimates of liver fat and future CVD risk among those with MetS compared with participants without MetS. A healthy obese phenotype was associated with a better metabolic profile than observed in normal weight individuals with MetS.

Show MeSH

Related in: MedlinePlus

Prevalence of persons with and without MetS within each BMI category among men (left panel) and among women (right panel) (total 100% within the BMI class).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198943&req=5

Figure 1: Prevalence of persons with and without MetS within each BMI category among men (left panel) and among women (right panel) (total 100% within the BMI class).

Mentions: A metabolically healthy but obese phenotype was observed in 9.2% of obese men and in 16.4% of obese women (Figure 1). Among all participants, the prevalence of healthy obesity was 2.0% among men and 4.5% among women. Of the normal weight individuals, 20.4% of men and 23.8% of women had the MetS (Figure 1). MetS increased with age in both sexes (data not shown).


Metabolically healthy and unhealthy obesity phenotypes in the general population: the FIN-D2D Survey.

Pajunen P, Kotronen A, Korpi-Hyövälti E, Keinänen-Kiukaanniemi S, Oksa H, Niskanen L, Saaristo T, Saltevo JT, Sundvall J, Vanhala M, Uusitupa M, Peltonen M - BMC Public Health (2011)

Prevalence of persons with and without MetS within each BMI category among men (left panel) and among women (right panel) (total 100% within the BMI class).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198943&req=5

Figure 1: Prevalence of persons with and without MetS within each BMI category among men (left panel) and among women (right panel) (total 100% within the BMI class).
Mentions: A metabolically healthy but obese phenotype was observed in 9.2% of obese men and in 16.4% of obese women (Figure 1). Among all participants, the prevalence of healthy obesity was 2.0% among men and 4.5% among women. Of the normal weight individuals, 20.4% of men and 23.8% of women had the MetS (Figure 1). MetS increased with age in both sexes (data not shown).

Bottom Line: MetS-BMI interaction was significant (p < 0.001) also for the Framingham 10 year CVD risk score, NAFLD score and estimated liver fat %, indicating greater effect of increasing BMI in participants with MetS compared to participants without MetS.Undetected Type 2 diabetes was more prevalent among those with MetS irrespective of the BMI class and increasing BMI had a significantly greater effect on estimates of liver fat and future CVD risk among those with MetS compared with participants without MetS.A healthy obese phenotype was associated with a better metabolic profile than observed in normal weight individuals with MetS.

View Article: PubMed Central - HTML - PubMed

Affiliation: Diabetes Prevention Unit, Division of Welfare and Health Promotion, National Institute for Health and Welfare, Helsinki, Finland. pia.pajunen@thl.fi

ABSTRACT

Background: The aim of this work was to examine the prevalence of different metabolical phenotypes of obesity, and to analyze, by using different risk scores, how the metabolic syndrome (MetS) definition discriminates between unhealthy and healthy metabolic phenotypes in different obesity classes.

Methods: The Finnish type 2 diabetes (FIN-D2D) survey, a part of the larger implementation study, was carried out in 2007. The present cross-sectional analysis comprises 2,849 individuals aged 45-74 years. The MetS was defined with the new Harmonization definition. Cardiovascular risk was estimated with the Framingham and SCORE risk scores. Diabetes risk was assessed with the FINDRISK score. Non-alcoholic fatty liver disease (NAFLD) was estimated with the NAFLD score. Participants with and without MetS were classified in different weight categories and analysis of regression models were used to test the linear trend between body mass index (BMI) and various characteristics in individuals with and without MetS; and interaction between BMI and MetS.

Results: A metabolically healthy but obese phenotype was observed in 9.2% of obese men and in 16.4% of obese women. The MetS-BMI interaction was significant for fasting glucose, 2-hour plasma glucose, fasting plasma insulin and insulin resistance (HOMA-IR)(p < 0.001 for all). The prevalence of total diabetes (detected prior to or during survey) was 37.0% in obese individuals with MetS and 4.3% in obese individuals without MetS (p < 0.001). MetS-BMI interaction was significant (p < 0.001) also for the Framingham 10 year CVD risk score, NAFLD score and estimated liver fat %, indicating greater effect of increasing BMI in participants with MetS compared to participants without MetS. The metabolically healthy but obese individuals had lower 2-hour postload glucose levels (p = 0.0030), lower NAFLD scores (p < 0.001) and lower CVD risk scores (Framingham, p < 0.001; SCORE, p = 0.002) than normal weight individuals with MetS.

Conclusions: Undetected Type 2 diabetes was more prevalent among those with MetS irrespective of the BMI class and increasing BMI had a significantly greater effect on estimates of liver fat and future CVD risk among those with MetS compared with participants without MetS. A healthy obese phenotype was associated with a better metabolic profile than observed in normal weight individuals with MetS.

Show MeSH
Related in: MedlinePlus