Limits...
The potential impact of immunization campaign budget re-allocation on global eradication of paediatric infectious diseases.

Fitzpatrick T, Bauch CT - BMC Public Health (2011)

Bottom Line: However, mathematical modeling is required to understand the potential extent of this effect.We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mathematics and Statistics, University of Guelph, Canada.

ABSTRACT

Background: The potential benefits of coordinating infectious disease eradication programs that use campaigns such as supplementary immunization activities (SIAs) should not be over-looked. One example of a coordinated approach is an adaptive "sequential strategy": first, all annual SIA budget is dedicated to the eradication of a single infectious disease; once that disease is eradicated, the annual SIA budget is re-focussed on eradicating a second disease, etc. Herd immunity suggests that a sequential strategy may eradicate several infectious diseases faster than a non-adaptive "simultaneous strategy" of dividing annual budget equally among eradication programs for those diseases. However, mathematical modeling is required to understand the potential extent of this effect.

Methods: Our objective was to illustrate how budget allocation strategies can interact with the nonlinear nature of disease transmission to determine time to eradication of several infectious diseases under different budget allocation strategies. Using a mathematical transmission model, we analyzed three hypothetical vaccine-preventable infectious diseases in three different countries. A central decision-maker can distribute funding among SIA programs for these three diseases according to either a sequential strategy or a simultaneous strategy. We explored the time to eradication under these two strategies under a range of scenarios.

Results: For a certain range of annual budgets, all three diseases can be eradicated relatively quickly under the sequential strategy, whereas eradication never occurs under the simultaneous strategy. However, moderate changes to total SIA budget, SIA frequency, order of eradication, or funding disruptions can create disproportionately large differences in the time and budget required for eradication under the sequential strategy. We find that the predicted time to eradication can be very sensitive to small differences in the rate of case importation between the countries. We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.

Conclusions: Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission. More sophisticated versions of such models may be useful to large international donors or other organizations as a planning or portfolio optimization tool, where choices must be made regarding how much funding to dedicate to different infectious disease eradication efforts.

Show MeSH

Related in: MedlinePlus

Change in order of eradication. Year of eradication under different reallocation orders (A-B-C; A-C-B; B-C-A; B-A-C; C-A-B; and C-B-A) for the sequential strategy with SIA budgets between $180 and $190 million (a) and budgets greater than $190 million (b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198942&req=5

Figure 6: Change in order of eradication. Year of eradication under different reallocation orders (A-B-C; A-C-B; B-C-A; B-A-C; C-A-B; and C-B-A) for the sequential strategy with SIA budgets between $180 and $190 million (a) and budgets greater than $190 million (b).

Mentions: For budgets between $180 and $190 million, the time to eradication increases a great deal if Disease C is eliminated before Disease B (Figure 6a). Beyond $190 million, the time to eradication is roughly the same under all six orderings, such that eradication of all three diseases is possible by 2027 (Figure 6b). The large difference in time to eradication for budgets between $180 and $190 million for different orderings may be due to the high transmissibility of Disease B, which requires higher coverage to eradicate than Disease A or C. Similarly, any order that aims to eradicate Disease B last requires the greatest amount of total funding, even under their respective optimal annual SIA budgets.


The potential impact of immunization campaign budget re-allocation on global eradication of paediatric infectious diseases.

Fitzpatrick T, Bauch CT - BMC Public Health (2011)

Change in order of eradication. Year of eradication under different reallocation orders (A-B-C; A-C-B; B-C-A; B-A-C; C-A-B; and C-B-A) for the sequential strategy with SIA budgets between $180 and $190 million (a) and budgets greater than $190 million (b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198942&req=5

Figure 6: Change in order of eradication. Year of eradication under different reallocation orders (A-B-C; A-C-B; B-C-A; B-A-C; C-A-B; and C-B-A) for the sequential strategy with SIA budgets between $180 and $190 million (a) and budgets greater than $190 million (b).
Mentions: For budgets between $180 and $190 million, the time to eradication increases a great deal if Disease C is eliminated before Disease B (Figure 6a). Beyond $190 million, the time to eradication is roughly the same under all six orderings, such that eradication of all three diseases is possible by 2027 (Figure 6b). The large difference in time to eradication for budgets between $180 and $190 million for different orderings may be due to the high transmissibility of Disease B, which requires higher coverage to eradicate than Disease A or C. Similarly, any order that aims to eradicate Disease B last requires the greatest amount of total funding, even under their respective optimal annual SIA budgets.

Bottom Line: However, mathematical modeling is required to understand the potential extent of this effect.We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mathematics and Statistics, University of Guelph, Canada.

ABSTRACT

Background: The potential benefits of coordinating infectious disease eradication programs that use campaigns such as supplementary immunization activities (SIAs) should not be over-looked. One example of a coordinated approach is an adaptive "sequential strategy": first, all annual SIA budget is dedicated to the eradication of a single infectious disease; once that disease is eradicated, the annual SIA budget is re-focussed on eradicating a second disease, etc. Herd immunity suggests that a sequential strategy may eradicate several infectious diseases faster than a non-adaptive "simultaneous strategy" of dividing annual budget equally among eradication programs for those diseases. However, mathematical modeling is required to understand the potential extent of this effect.

Methods: Our objective was to illustrate how budget allocation strategies can interact with the nonlinear nature of disease transmission to determine time to eradication of several infectious diseases under different budget allocation strategies. Using a mathematical transmission model, we analyzed three hypothetical vaccine-preventable infectious diseases in three different countries. A central decision-maker can distribute funding among SIA programs for these three diseases according to either a sequential strategy or a simultaneous strategy. We explored the time to eradication under these two strategies under a range of scenarios.

Results: For a certain range of annual budgets, all three diseases can be eradicated relatively quickly under the sequential strategy, whereas eradication never occurs under the simultaneous strategy. However, moderate changes to total SIA budget, SIA frequency, order of eradication, or funding disruptions can create disproportionately large differences in the time and budget required for eradication under the sequential strategy. We find that the predicted time to eradication can be very sensitive to small differences in the rate of case importation between the countries. We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.

Conclusions: Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission. More sophisticated versions of such models may be useful to large international donors or other organizations as a planning or portfolio optimization tool, where choices must be made regarding how much funding to dedicate to different infectious disease eradication efforts.

Show MeSH
Related in: MedlinePlus