Limits...
The potential impact of immunization campaign budget re-allocation on global eradication of paediatric infectious diseases.

Fitzpatrick T, Bauch CT - BMC Public Health (2011)

Bottom Line: However, mathematical modeling is required to understand the potential extent of this effect.We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mathematics and Statistics, University of Guelph, Canada.

ABSTRACT

Background: The potential benefits of coordinating infectious disease eradication programs that use campaigns such as supplementary immunization activities (SIAs) should not be over-looked. One example of a coordinated approach is an adaptive "sequential strategy": first, all annual SIA budget is dedicated to the eradication of a single infectious disease; once that disease is eradicated, the annual SIA budget is re-focussed on eradicating a second disease, etc. Herd immunity suggests that a sequential strategy may eradicate several infectious diseases faster than a non-adaptive "simultaneous strategy" of dividing annual budget equally among eradication programs for those diseases. However, mathematical modeling is required to understand the potential extent of this effect.

Methods: Our objective was to illustrate how budget allocation strategies can interact with the nonlinear nature of disease transmission to determine time to eradication of several infectious diseases under different budget allocation strategies. Using a mathematical transmission model, we analyzed three hypothetical vaccine-preventable infectious diseases in three different countries. A central decision-maker can distribute funding among SIA programs for these three diseases according to either a sequential strategy or a simultaneous strategy. We explored the time to eradication under these two strategies under a range of scenarios.

Results: For a certain range of annual budgets, all three diseases can be eradicated relatively quickly under the sequential strategy, whereas eradication never occurs under the simultaneous strategy. However, moderate changes to total SIA budget, SIA frequency, order of eradication, or funding disruptions can create disproportionately large differences in the time and budget required for eradication under the sequential strategy. We find that the predicted time to eradication can be very sensitive to small differences in the rate of case importation between the countries. We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.

Conclusions: Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission. More sophisticated versions of such models may be useful to large international donors or other organizations as a planning or portfolio optimization tool, where choices must be made regarding how much funding to dedicate to different infectious disease eradication efforts.

Show MeSH

Related in: MedlinePlus

Time series for similar case importation rates. Prevalence of the three diseases over time in the sequential strategy, given a case importation rate of 0.05% per year into and out of India, for India (a), Nigeria (b) and Afghanistan (c), and given a case importation rate into and out of India is 0.06% per year for India (d), Nigeria (e) and Afghanistan (f). These two scenarios correspond to that of Figure 9b, where other case importation rates are held constant at baseline value of 0.01% per year.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198942&req=5

Figure 10: Time series for similar case importation rates. Prevalence of the three diseases over time in the sequential strategy, given a case importation rate of 0.05% per year into and out of India, for India (a), Nigeria (b) and Afghanistan (c), and given a case importation rate into and out of India is 0.06% per year for India (d), Nigeria (e) and Afghanistan (f). These two scenarios correspond to that of Figure 9b, where other case importation rates are held constant at baseline value of 0.01% per year.

Mentions: To understand how small changes in case importation rate can lead to large changes in the time to eradication, we contrast the scenarios where case importation rates into and out of India occur at 0.05% per year versus 0.06% per year while other case import rates are held constant at baseline values (Figure 9b). In Figure 9b we observed that eradication of all three diseases occurs by 2060 at a rate of 0.05% per year, but it does not occur until 2168 at a rate of 0.06% per year. In a plot of disease prevalence over time corresponding to these two scenarios (Figure 10), we observe that the dynamics of Disease B are driving these contrasting outcomes. When case importation occurs at a rate of 0.05% per year, outbreaks of Disease B in Nigeria and Afghanistan are highly episodic and appear to be subject to local extinction (Figure 10a-c). Hence, eradication occurs by 2060. In comparison, when case importation occurs at 0.06% per year, outbreaks of Disease B become more regular and less episodic due to rescue effects, such that whenever prevalence is low in Nigeria, prevalence is often high in Afghanistan and vice versa (Figure 10d-f). As a result, all three diseases are not eradicated until 2168.


The potential impact of immunization campaign budget re-allocation on global eradication of paediatric infectious diseases.

Fitzpatrick T, Bauch CT - BMC Public Health (2011)

Time series for similar case importation rates. Prevalence of the three diseases over time in the sequential strategy, given a case importation rate of 0.05% per year into and out of India, for India (a), Nigeria (b) and Afghanistan (c), and given a case importation rate into and out of India is 0.06% per year for India (d), Nigeria (e) and Afghanistan (f). These two scenarios correspond to that of Figure 9b, where other case importation rates are held constant at baseline value of 0.01% per year.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198942&req=5

Figure 10: Time series for similar case importation rates. Prevalence of the three diseases over time in the sequential strategy, given a case importation rate of 0.05% per year into and out of India, for India (a), Nigeria (b) and Afghanistan (c), and given a case importation rate into and out of India is 0.06% per year for India (d), Nigeria (e) and Afghanistan (f). These two scenarios correspond to that of Figure 9b, where other case importation rates are held constant at baseline value of 0.01% per year.
Mentions: To understand how small changes in case importation rate can lead to large changes in the time to eradication, we contrast the scenarios where case importation rates into and out of India occur at 0.05% per year versus 0.06% per year while other case import rates are held constant at baseline values (Figure 9b). In Figure 9b we observed that eradication of all three diseases occurs by 2060 at a rate of 0.05% per year, but it does not occur until 2168 at a rate of 0.06% per year. In a plot of disease prevalence over time corresponding to these two scenarios (Figure 10), we observe that the dynamics of Disease B are driving these contrasting outcomes. When case importation occurs at a rate of 0.05% per year, outbreaks of Disease B in Nigeria and Afghanistan are highly episodic and appear to be subject to local extinction (Figure 10a-c). Hence, eradication occurs by 2060. In comparison, when case importation occurs at 0.06% per year, outbreaks of Disease B become more regular and less episodic due to rescue effects, such that whenever prevalence is low in Nigeria, prevalence is often high in Afghanistan and vice versa (Figure 10d-f). As a result, all three diseases are not eradicated until 2168.

Bottom Line: However, mathematical modeling is required to understand the potential extent of this effect.We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Mathematics and Statistics, University of Guelph, Canada.

ABSTRACT

Background: The potential benefits of coordinating infectious disease eradication programs that use campaigns such as supplementary immunization activities (SIAs) should not be over-looked. One example of a coordinated approach is an adaptive "sequential strategy": first, all annual SIA budget is dedicated to the eradication of a single infectious disease; once that disease is eradicated, the annual SIA budget is re-focussed on eradicating a second disease, etc. Herd immunity suggests that a sequential strategy may eradicate several infectious diseases faster than a non-adaptive "simultaneous strategy" of dividing annual budget equally among eradication programs for those diseases. However, mathematical modeling is required to understand the potential extent of this effect.

Methods: Our objective was to illustrate how budget allocation strategies can interact with the nonlinear nature of disease transmission to determine time to eradication of several infectious diseases under different budget allocation strategies. Using a mathematical transmission model, we analyzed three hypothetical vaccine-preventable infectious diseases in three different countries. A central decision-maker can distribute funding among SIA programs for these three diseases according to either a sequential strategy or a simultaneous strategy. We explored the time to eradication under these two strategies under a range of scenarios.

Results: For a certain range of annual budgets, all three diseases can be eradicated relatively quickly under the sequential strategy, whereas eradication never occurs under the simultaneous strategy. However, moderate changes to total SIA budget, SIA frequency, order of eradication, or funding disruptions can create disproportionately large differences in the time and budget required for eradication under the sequential strategy. We find that the predicted time to eradication can be very sensitive to small differences in the rate of case importation between the countries. We also find that the time to eradication of all three diseases is not necessarily lowest when the least transmissible disease is targeted first.

Conclusions: Relatively modest differences in budget allocation strategies in the near-term can result in surprisingly large long-term differences in time required to eradicate, as a result of the amplifying effects of herd immunity and the nonlinearities of disease transmission. More sophisticated versions of such models may be useful to large international donors or other organizations as a planning or portfolio optimization tool, where choices must be made regarding how much funding to dedicate to different infectious disease eradication efforts.

Show MeSH
Related in: MedlinePlus