Limits...
Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease.

Sohal SS, Reid D, Soltani A, Ward C, Weston S, Muller HK, Wood-Baker R, Walters EH - Respir. Res. (2011)

Bottom Line: We aimed to confirm the epithelial origin of these Rbm cells, and to exclude potential confounding by infiltrating inflammatory cells.In the basal epithelium significantly more cells stained for S100A4 compared to infiltrating macrophages, fibroblasts or immune cells: median, 26 (21.3 - 37.3) versus 0 (0 - 9.6) per mm, p < 0.003.Markedly more S100A4 staining cells were also observed in the Rbm compared to infiltrating macrophages, neutrophils, fibroblasts or immune cells or any sub-type: 58 (37.3 - 92.6) versus 0 (0 - 4.8) cells/mm Rbm, p < 0.003.

View Article: PubMed Central - HTML - PubMed

Affiliation: NHMRC National Centre for Research Excellence in Chronic Respiratory Disease, Menzies Research Institute, 17 Liverpool Street, Hobart, 7000, Australia.

ABSTRACT

Background: The reticular basement membrane (Rbm) in smokers and especially smokers with COPD is fragmented with "clefts" containing cells staining for the collagenase matrix-metalloproteinase-9 (MMP-9) and fibroblast protein, S100A4. These cells are also present in the basal epithelium. Such changes are likely hallmarks of epithelial mesenchymal transition (EMT). We aimed to confirm the epithelial origin of these Rbm cells, and to exclude potential confounding by infiltrating inflammatory cells.

Methods: Endobronchial biopsy sections from 17 COPD current smokers, with documented Rbm splitting and cellularity were stained for neutrophil elastase (neutrophil marker), CD68 (macrophage/mature fibroblasts), CD4+/CD8+ T lymphocytes, CD19 (B-cells), CD11c (dendritic cells/inflammatory cells), and S100 (Langerhans cells). The number of cells in the Rbm and epithelium staining for these "inflammatory" cell markers were then compared to numbers staining for S100A4, "a documented EMT epitope". Slides were double stained for S100A4 and cytokeratin(s).

Results: In the basal epithelium significantly more cells stained for S100A4 compared to infiltrating macrophages, fibroblasts or immune cells: median, 26 (21.3 - 37.3) versus 0 (0 - 9.6) per mm, p < 0.003. Markedly more S100A4 staining cells were also observed in the Rbm compared to infiltrating macrophages, neutrophils, fibroblasts or immune cells or any sub-type: 58 (37.3 - 92.6) versus 0 (0 - 4.8) cells/mm Rbm, p < 0.003. Cells in the basal epithelium 26 (21.3 - 37.3) per mm) and Rbm (5.9 (2.3 - 13.8) per mm) frequently double stained for both cytokeratin and S100A4.

Conclusions: These data provide additional support for active EMT in COPD airways.

Show MeSH

Related in: MedlinePlus

Bronchial biopsy specimen from a COPD current smoker double-stained for both S100A4 (green) and cytokeratin (red). Black arrows showing cells in the basal epithelium and reticular basement membrane (Rbm) and also within the superficial lamina propria, double-stained for both cytokeratin (red, anti-pan-cytokeratin monoclonal antibody, epithelial marker) and S100A4 (green, anti-S100A4 polyclonal antibody, mesenchymal marker). Overall, there are fewer double-stained cells in the Rbm than in the basal epithelium; consistent with loss of epithelial markers as these cells gain mesenchymal markers. Original magnifications 100 ×/1.30 Oil. Scale bar = 50 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198934&req=5

Figure 1: Bronchial biopsy specimen from a COPD current smoker double-stained for both S100A4 (green) and cytokeratin (red). Black arrows showing cells in the basal epithelium and reticular basement membrane (Rbm) and also within the superficial lamina propria, double-stained for both cytokeratin (red, anti-pan-cytokeratin monoclonal antibody, epithelial marker) and S100A4 (green, anti-S100A4 polyclonal antibody, mesenchymal marker). Overall, there are fewer double-stained cells in the Rbm than in the basal epithelium; consistent with loss of epithelial markers as these cells gain mesenchymal markers. Original magnifications 100 ×/1.30 Oil. Scale bar = 50 μm.

Mentions: To confirm a potential epithelial origin of cells in the Rbm, bronchial biopsy sections were double stained for both cytokeratin-(s) (epithelial marker) and S100A4 (mesenchymal marker). This analysis demonstrated that all cells in the epithelium stained for cytokeratin as might be expected, while about 13.8% of these stained for S100A4; all of the S100A4 cells stained for cytokeratin-(s) (i.e. the cells exhibited both visualization chromogens). In the Rbm, however, fewer cells (about 7%) were positive for cytokeratin-(s) but these cells were all double-positive for both cytokeratin (s) and S100A4 (Figure 1 and Table 2).


Evaluation of epithelial mesenchymal transition in patients with chronic obstructive pulmonary disease.

Sohal SS, Reid D, Soltani A, Ward C, Weston S, Muller HK, Wood-Baker R, Walters EH - Respir. Res. (2011)

Bronchial biopsy specimen from a COPD current smoker double-stained for both S100A4 (green) and cytokeratin (red). Black arrows showing cells in the basal epithelium and reticular basement membrane (Rbm) and also within the superficial lamina propria, double-stained for both cytokeratin (red, anti-pan-cytokeratin monoclonal antibody, epithelial marker) and S100A4 (green, anti-S100A4 polyclonal antibody, mesenchymal marker). Overall, there are fewer double-stained cells in the Rbm than in the basal epithelium; consistent with loss of epithelial markers as these cells gain mesenchymal markers. Original magnifications 100 ×/1.30 Oil. Scale bar = 50 μm.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198934&req=5

Figure 1: Bronchial biopsy specimen from a COPD current smoker double-stained for both S100A4 (green) and cytokeratin (red). Black arrows showing cells in the basal epithelium and reticular basement membrane (Rbm) and also within the superficial lamina propria, double-stained for both cytokeratin (red, anti-pan-cytokeratin monoclonal antibody, epithelial marker) and S100A4 (green, anti-S100A4 polyclonal antibody, mesenchymal marker). Overall, there are fewer double-stained cells in the Rbm than in the basal epithelium; consistent with loss of epithelial markers as these cells gain mesenchymal markers. Original magnifications 100 ×/1.30 Oil. Scale bar = 50 μm.
Mentions: To confirm a potential epithelial origin of cells in the Rbm, bronchial biopsy sections were double stained for both cytokeratin-(s) (epithelial marker) and S100A4 (mesenchymal marker). This analysis demonstrated that all cells in the epithelium stained for cytokeratin as might be expected, while about 13.8% of these stained for S100A4; all of the S100A4 cells stained for cytokeratin-(s) (i.e. the cells exhibited both visualization chromogens). In the Rbm, however, fewer cells (about 7%) were positive for cytokeratin-(s) but these cells were all double-positive for both cytokeratin (s) and S100A4 (Figure 1 and Table 2).

Bottom Line: We aimed to confirm the epithelial origin of these Rbm cells, and to exclude potential confounding by infiltrating inflammatory cells.In the basal epithelium significantly more cells stained for S100A4 compared to infiltrating macrophages, fibroblasts or immune cells: median, 26 (21.3 - 37.3) versus 0 (0 - 9.6) per mm, p < 0.003.Markedly more S100A4 staining cells were also observed in the Rbm compared to infiltrating macrophages, neutrophils, fibroblasts or immune cells or any sub-type: 58 (37.3 - 92.6) versus 0 (0 - 4.8) cells/mm Rbm, p < 0.003.

View Article: PubMed Central - HTML - PubMed

Affiliation: NHMRC National Centre for Research Excellence in Chronic Respiratory Disease, Menzies Research Institute, 17 Liverpool Street, Hobart, 7000, Australia.

ABSTRACT

Background: The reticular basement membrane (Rbm) in smokers and especially smokers with COPD is fragmented with "clefts" containing cells staining for the collagenase matrix-metalloproteinase-9 (MMP-9) and fibroblast protein, S100A4. These cells are also present in the basal epithelium. Such changes are likely hallmarks of epithelial mesenchymal transition (EMT). We aimed to confirm the epithelial origin of these Rbm cells, and to exclude potential confounding by infiltrating inflammatory cells.

Methods: Endobronchial biopsy sections from 17 COPD current smokers, with documented Rbm splitting and cellularity were stained for neutrophil elastase (neutrophil marker), CD68 (macrophage/mature fibroblasts), CD4+/CD8+ T lymphocytes, CD19 (B-cells), CD11c (dendritic cells/inflammatory cells), and S100 (Langerhans cells). The number of cells in the Rbm and epithelium staining for these "inflammatory" cell markers were then compared to numbers staining for S100A4, "a documented EMT epitope". Slides were double stained for S100A4 and cytokeratin(s).

Results: In the basal epithelium significantly more cells stained for S100A4 compared to infiltrating macrophages, fibroblasts or immune cells: median, 26 (21.3 - 37.3) versus 0 (0 - 9.6) per mm, p < 0.003. Markedly more S100A4 staining cells were also observed in the Rbm compared to infiltrating macrophages, neutrophils, fibroblasts or immune cells or any sub-type: 58 (37.3 - 92.6) versus 0 (0 - 4.8) cells/mm Rbm, p < 0.003. Cells in the basal epithelium 26 (21.3 - 37.3) per mm) and Rbm (5.9 (2.3 - 13.8) per mm) frequently double stained for both cytokeratin and S100A4.

Conclusions: These data provide additional support for active EMT in COPD airways.

Show MeSH
Related in: MedlinePlus