Limits...
Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes.

Rey G, Aouba A, Pavillon G, Hoffmann R, Plug I, Westerling R, Jougla E, Mackenbach J - Popul Health Metr (2011)

Bottom Line: Monitoring the time course of mortality by cause is a key public health issue.Most of the detected jumps were found to be plausible.The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.

View Article: PubMed Central - HTML - PubMed

Affiliation: INSERM, CépiDc, Le Kremlin-Bicêtre, France. gregoire.rey@inserm.fr.

ABSTRACT

Background: Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis.

Methods: The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers.For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results.

Results: Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.

Conclusion: The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming.

No MeSH data available.


Related in: MedlinePlus

Examples of corrected mortality rate (per 100,000 people) time series.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198909&req=5

Figure 1: Examples of corrected mortality rate (per 100,000 people) time series.

Mentions: Considering some of the most clear-cut time series, the profile of the corrected time series is quite different from that of the uncorrected series (Figure 1). It is noteworthy that the corrected curves do not reduce the general trends at the jump positions, which would have been the case if constant rather than linear kernel smoothing was chosen. Rather, they prolong the trends, even if the jump is in the opposite direction of the general trend.


Cause-specific mortality time series analysis: a general method to detect and correct for abrupt data production changes.

Rey G, Aouba A, Pavillon G, Hoffmann R, Plug I, Westerling R, Jougla E, Mackenbach J - Popul Health Metr (2011)

Examples of corrected mortality rate (per 100,000 people) time series.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198909&req=5

Figure 1: Examples of corrected mortality rate (per 100,000 people) time series.
Mentions: Considering some of the most clear-cut time series, the profile of the corrected time series is quite different from that of the uncorrected series (Figure 1). It is noteworthy that the corrected curves do not reduce the general trends at the jump positions, which would have been the case if constant rather than linear kernel smoothing was chosen. Rather, they prolong the trends, even if the jump is in the opposite direction of the general trend.

Bottom Line: Monitoring the time course of mortality by cause is a key public health issue.Most of the detected jumps were found to be plausible.The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.

View Article: PubMed Central - HTML - PubMed

Affiliation: INSERM, CépiDc, Le Kremlin-Bicêtre, France. gregoire.rey@inserm.fr.

ABSTRACT

Background: Monitoring the time course of mortality by cause is a key public health issue. However, several mortality data production changes may affect cause-specific time trends, thus altering the interpretation. This paper proposes a statistical method that detects abrupt changes ("jumps") and estimates correction factors that may be used for further analysis.

Methods: The method was applied to a subset of the AMIEHS (Avoidable Mortality in the European Union, toward better Indicators for the Effectiveness of Health Systems) project mortality database and considered for six European countries and 13 selected causes of deaths. For each country and cause of death, an automated jump detection method called Polydect was applied to the log mortality rate time series. The plausibility of a data production change associated with each detected jump was evaluated through literature search or feedback obtained from the national data producers.For each plausible jump position, the statistical significance of the between-age and between-gender jump amplitude heterogeneity was evaluated by means of a generalized additive regression model, and correction factors were deduced from the results.

Results: Forty-nine jumps were detected by the Polydect method from 1970 to 2005. Most of the detected jumps were found to be plausible. The age- and gender-specific amplitudes of the jumps were estimated when they were statistically heterogeneous, and they showed greater by-age heterogeneity than by-gender heterogeneity.

Conclusion: The method presented in this paper was successfully applied to a large set of causes of death and countries. The method appears to be an alternative to bridge coding methods when the latter are not systematically implemented because they are time- and resource-consuming.

No MeSH data available.


Related in: MedlinePlus