Limits...
Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles.

Giritharan G, Ilic D, Gormley M, Krtolica A - PLoS ONE (2011)

Bottom Line: Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo.Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging.These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.

View Article: PubMed Central - PubMed

Affiliation: SLL Sciences, StemLifeLine, Inc., San Carlos, California, United States of America.

ABSTRACT
We have derived hESC from biopsied blastomeres of cleavage stage embryos under virtually the same conditions we used for the derivation of hESC lines from inner cell mass of blastocyst stage embryos. Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo. To examine whether hESC lines derived from two developmental stages of the embryo differ in gene expression, we have subjected three blastomere-derived hESC lines and two ICM-derived hESC lines grown under identical culture conditions to transcriptome analysis using gene expression arrays. Unlike previously reported comparisons of hESC lines which demonstrated, apart from core hESC-associated pluripotency signature, significant variations in gene expression profiles of different lines, our data show that hESC lines derived and grown under well-controlled defined culture conditions adopt nearly identical gene expression profiles. Moreover, blastomere-derived and ICM-derived hESC exhibited very similar transcriptional profiles independent of the developmental stage of the embryo from which they originated. Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging. These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.

Show MeSH

Related in: MedlinePlus

Key stemness pathways in cleavage stage blastomere-derived and blastocyst stage ICM-derived lines.Ingenuity Pathways Analysis showing that the key stemness pathways regulated by OCT4 and NANOG are active in both blastomere-derived (A, C) and ICM-derived (B) hESC lines when compared to reference RNA.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198782&req=5

pone-0026570-g006: Key stemness pathways in cleavage stage blastomere-derived and blastocyst stage ICM-derived lines.Ingenuity Pathways Analysis showing that the key stemness pathways regulated by OCT4 and NANOG are active in both blastomere-derived (A, C) and ICM-derived (B) hESC lines when compared to reference RNA.

Mentions: The master regulators of human ESC stemness pathways are transcription factors OCT4, SOX2 and NANOG [38]. They are critically involved in establishment and maintenance of pluripotent state in ESC and thus, closely associated with their stem cell identity and function. To identify whether key stemness pathways regulated by OCT4, SOX2 and NANOG are active in both blastomere- and whole embryo-derived hESC lines we compared expression of genes involved in these pathways to reference RNA and, performed the pathway analysis using Ingenuity Pathways Analysis platform. The analysis revealed that a number of genes within these pathways such as OCT4, NANOG, SOX2 and SALL4 were overexpressed in both blastomere- and whole embryo-derived lines suggesting that hESC derived from two developmentally different stages of human preimplantation embryos, cleavage and blastocyst, maintain equivalent pluripotent states (Fig. 6).


Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles.

Giritharan G, Ilic D, Gormley M, Krtolica A - PLoS ONE (2011)

Key stemness pathways in cleavage stage blastomere-derived and blastocyst stage ICM-derived lines.Ingenuity Pathways Analysis showing that the key stemness pathways regulated by OCT4 and NANOG are active in both blastomere-derived (A, C) and ICM-derived (B) hESC lines when compared to reference RNA.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198782&req=5

pone-0026570-g006: Key stemness pathways in cleavage stage blastomere-derived and blastocyst stage ICM-derived lines.Ingenuity Pathways Analysis showing that the key stemness pathways regulated by OCT4 and NANOG are active in both blastomere-derived (A, C) and ICM-derived (B) hESC lines when compared to reference RNA.
Mentions: The master regulators of human ESC stemness pathways are transcription factors OCT4, SOX2 and NANOG [38]. They are critically involved in establishment and maintenance of pluripotent state in ESC and thus, closely associated with their stem cell identity and function. To identify whether key stemness pathways regulated by OCT4, SOX2 and NANOG are active in both blastomere- and whole embryo-derived hESC lines we compared expression of genes involved in these pathways to reference RNA and, performed the pathway analysis using Ingenuity Pathways Analysis platform. The analysis revealed that a number of genes within these pathways such as OCT4, NANOG, SOX2 and SALL4 were overexpressed in both blastomere- and whole embryo-derived lines suggesting that hESC derived from two developmentally different stages of human preimplantation embryos, cleavage and blastocyst, maintain equivalent pluripotent states (Fig. 6).

Bottom Line: Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo.Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging.These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.

View Article: PubMed Central - PubMed

Affiliation: SLL Sciences, StemLifeLine, Inc., San Carlos, California, United States of America.

ABSTRACT
We have derived hESC from biopsied blastomeres of cleavage stage embryos under virtually the same conditions we used for the derivation of hESC lines from inner cell mass of blastocyst stage embryos. Blastomere-derived hESC lines exhibited all the standard characteristics of hESC including undifferentiated proliferation, genomic stability, expression of pluripotency markers and the ability to differentiate into the cells of all three germ layers both in vitro and in vivo. To examine whether hESC lines derived from two developmental stages of the embryo differ in gene expression, we have subjected three blastomere-derived hESC lines and two ICM-derived hESC lines grown under identical culture conditions to transcriptome analysis using gene expression arrays. Unlike previously reported comparisons of hESC lines which demonstrated, apart from core hESC-associated pluripotency signature, significant variations in gene expression profiles of different lines, our data show that hESC lines derived and grown under well-controlled defined culture conditions adopt nearly identical gene expression profiles. Moreover, blastomere-derived and ICM-derived hESC exhibited very similar transcriptional profiles independent of the developmental stage of the embryo from which they originated. Furthermore, this profile was evident in very early passages of the cells and did not appear to be affected by extensive passaging. These results suggest that during derivation process cells which give rise to hESC acquire virtually identical stable phenotype and are not affected by the developmental stage of the starting cell population.

Show MeSH
Related in: MedlinePlus