Limits...
Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

Abdel-Motal UM, Sarkis PT, Han T, Pudney J, Anderson DJ, Zhu Q, Marasco WA - PLoS ONE (2011)

Bottom Line: Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or "minibody" was constructed.Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

View Article: PubMed Central - PubMed

Affiliation: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America.

ABSTRACT

Background: Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and findings: This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal) in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.

Conclusion: This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

Show MeSH

Related in: MedlinePlus

Functional comparison of b12 minibodies and full-length b12 IgG.Both b12 minibodies and full-length b12 IgG proteins were tested at equimolar concentrations for their capacity to (A) bind to HIV-1 gp120 by ELISA, and (B) to neutralize HIV-1bal virus.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198777&req=5

pone-0026473-g004: Functional comparison of b12 minibodies and full-length b12 IgG.Both b12 minibodies and full-length b12 IgG proteins were tested at equimolar concentrations for their capacity to (A) bind to HIV-1 gp120 by ELISA, and (B) to neutralize HIV-1bal virus.

Mentions: To evaluate the biological activity of b12 minibody in comparison to that of full-length b12 IgG1, the minibodies were produced by transient transfection of pTR-b12scFvFc into 293T cells and affinity-purified from the cell culture supernatants using Protein A. Both proteins were tested at equimolar concentrations for the capacity to bind to HIV-1bal gp120. Figure 4A shows that b12 IgG and the b12 minibody have very similar ELISA binding curves at the concentrations used in this assay.


Anti-gp120 minibody gene transfer to female genital epithelial cells protects against HIV-1 virus challenge in vitro.

Abdel-Motal UM, Sarkis PT, Han T, Pudney J, Anderson DJ, Zhu Q, Marasco WA - PLoS ONE (2011)

Functional comparison of b12 minibodies and full-length b12 IgG.Both b12 minibodies and full-length b12 IgG proteins were tested at equimolar concentrations for their capacity to (A) bind to HIV-1 gp120 by ELISA, and (B) to neutralize HIV-1bal virus.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198777&req=5

pone-0026473-g004: Functional comparison of b12 minibodies and full-length b12 IgG.Both b12 minibodies and full-length b12 IgG proteins were tested at equimolar concentrations for their capacity to (A) bind to HIV-1 gp120 by ELISA, and (B) to neutralize HIV-1bal virus.
Mentions: To evaluate the biological activity of b12 minibody in comparison to that of full-length b12 IgG1, the minibodies were produced by transient transfection of pTR-b12scFvFc into 293T cells and affinity-purified from the cell culture supernatants using Protein A. Both proteins were tested at equimolar concentrations for the capacity to bind to HIV-1bal gp120. Figure 4A shows that b12 IgG and the b12 minibody have very similar ELISA binding curves at the concentrations used in this assay.

Bottom Line: Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or "minibody" was constructed.Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

View Article: PubMed Central - PubMed

Affiliation: Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America.

ABSTRACT

Background: Although cervico-vaginal epithelial cells of the female lower genital tract provide the initial defense system against HIV-1 infection, the protection is sometimes incomplete. Thus, enhancing anti-HIV-1 humoral immunity at the mucosal cell surface by local expression of anti-HIV-1 broadly neutralizing antibodies (BnAb) that block HIV-1 entry would provide an important new intervention that could slow the spread of HIV/AIDS.

Methods and findings: This study tested the hypothesis that adeno-associated virus (AAV)-BnAb gene transfer to cervico-vaginal epithelial cells will lead to protection against HIV-1. Accordingly, a recombinant AAV vector that encodes human b12 anti-HIV gp120 BnAb as a single-chain variable fragment Fc fusion (scFvFc), or "minibody" was constructed. The secreted b12 minibody was shown to be biologically functional in binding to virus envelope protein, neutralizing HIV-1 and importantly, blocking transfer and infectivity of HIV-1(bal) in an organotypic human vaginal epithelial cell (VEC) model. Furthermore, cervico-vaginal epithelial stem cells were found to be efficiently transduced by the optimal AAV serotype mediated expression of GFP.

Conclusion: This study provides the foundation for a novel microbicide strategy to protect against sexual transmission of HIV-1 by AAV transfer of broadly neutralizing antibody genes to cervico-vaginal epithelial stem cells that could replenish b12 BnAb secreting cells through multiple menstrual cycles.

Show MeSH
Related in: MedlinePlus