Limits...
Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana.

Wynn AN, Rueschhoff EE, Franks RG - PLoS ONE (2011)

Bottom Line: Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM.This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation.Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.

ABSTRACT
In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGULATING FACTOR (GRF) families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

Show MeSH

Related in: MedlinePlus

Results of in situ hybridization with LFY antisense probe.Numbers indicate floral stages. All panels show transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression. ov - ovule; Scale bars in all panels are 100 microns. All panels are Col-0 wild type tissue except as marked.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198736&req=5

pone-0026231-g011: Results of in situ hybridization with LFY antisense probe.Numbers indicate floral stages. All panels show transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression. ov - ovule; Scale bars in all panels are 100 microns. All panels are Col-0 wild type tissue except as marked.

Mentions: We detected strong LEAFY (LFY) expression in the stage 1–3 floral primordia as previously reported (Fig. 11A) [58]. In the seu ant double mutant tissue expression of LFY in the floral stages 1–3 appeared reduced relative to wild type levels (Fig. 11B). During floral stages 4 and 5 LFY is expressed strongly in the petal and stamen primordia as they arise, but only weakly detected in the central floral dome (data not shown). During floral stages 6 and 7 LFY expression is strongly detected in the adaxial core of the gynoecium and within the medial domain at the apex (Fig. 11C and D). Expression of LFY in the stage 6 seu ant gynoecia was very reduced relative to wild type levels (Fig. 11E). In early stage 8 wild type tissue LFY expression is detectable in the early ovule primordia (Fig. 11 F).


Transcriptomic characterization of a synergistic genetic interaction during carpel margin meristem development in Arabidopsis thaliana.

Wynn AN, Rueschhoff EE, Franks RG - PLoS ONE (2011)

Results of in situ hybridization with LFY antisense probe.Numbers indicate floral stages. All panels show transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression. ov - ovule; Scale bars in all panels are 100 microns. All panels are Col-0 wild type tissue except as marked.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198736&req=5

pone-0026231-g011: Results of in situ hybridization with LFY antisense probe.Numbers indicate floral stages. All panels show transverse (cross sectional) tissue orientation. Arrowheads indicate medial domain expression. ov - ovule; Scale bars in all panels are 100 microns. All panels are Col-0 wild type tissue except as marked.
Mentions: We detected strong LEAFY (LFY) expression in the stage 1–3 floral primordia as previously reported (Fig. 11A) [58]. In the seu ant double mutant tissue expression of LFY in the floral stages 1–3 appeared reduced relative to wild type levels (Fig. 11B). During floral stages 4 and 5 LFY is expressed strongly in the petal and stamen primordia as they arise, but only weakly detected in the central floral dome (data not shown). During floral stages 6 and 7 LFY expression is strongly detected in the adaxial core of the gynoecium and within the medial domain at the apex (Fig. 11C and D). Expression of LFY in the stage 6 seu ant gynoecia was very reduced relative to wild type levels (Fig. 11E). In early stage 8 wild type tissue LFY expression is detectable in the early ovule primordia (Fig. 11 F).

Bottom Line: Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM.This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation.Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

View Article: PubMed Central - PubMed

Affiliation: Department of Genetics, North Carolina State University, Raleigh, North Carolina, United States of America.

ABSTRACT
In flowering plants the gynoecium is the female reproductive structure. In Arabidopsis thaliana ovules initiate within the developing gynoecium from meristematic tissue located along the margins of the floral carpels. When fertilized the ovules will develop into seeds. SEUSS (SEU) and AINTEGUMENTA (ANT) encode transcriptional regulators that are critical for the proper formation of ovules from the carpel margin meristem (CMM). The synergistic loss of ovule initiation observed in the seu ant double mutant suggests that SEU and ANT share overlapping functions during CMM development. However the molecular mechanism underlying this synergistic interaction is unknown. Using the ATH1 transcriptomics platform we identified transcripts that were differentially expressed in seu ant double mutant relative to wild type and single mutant gynoecia. In particular we sought to identify transcripts whose expression was dependent on the coordinated activities of the SEU and ANT gene products. Our analysis identifies a diverse set of transcripts that display altered expression in the seu ant double mutant tissues. The analysis of overrepresented Gene Ontology classifications suggests a preponderance of transcriptional regulators including multiple members of the REPRODUCTIVE MERISTEMS (REM) and GROWTH-REGULATING FACTOR (GRF) families are mis-regulated in the seu ant gynoecia. Our in situ hybridization analyses indicate that many of these genes are preferentially expressed within the developing CMM. This study is the first step toward a detailed description of the transcriptional regulatory hierarchies that control the development of the CMM and ovule initiation. Understanding the regulatory hierarchy controlled by SEU and ANT will clarify the molecular mechanism of the functional redundancy of these two genes and illuminate the developmental and molecular events required for CMM development and ovule initiation.

Show MeSH
Related in: MedlinePlus