Limits...
How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex.

Setty Y, Chen CC, Secrier M, Skoblov N, Kalamatianos D, Emmott S - BMC Syst Biol (2011)

Bottom Line: Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program.Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies.This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.

View Article: PubMed Central - HTML - PubMed

Affiliation: Computational Science Laboratory, Microsoft Research, Cambridge, CB3 0FB, UK. yaki.setty@gmail.com

ABSTRACT

Background: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process.

Results: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration.

Conclusions: We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.

Show MeSH

Related in: MedlinePlus

Delay in multipolar migration in Lis1-defective neurons. Oscillatory association-dissociation behavior of neurons from the glial fiber in four representative individual neurons. A. A cell that immediately adopts multipolar migration. B. Short delay. C. Long delay. D. Oscillatory association over the entire simulated period.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC3198702&req=5

Figure 5: Delay in multipolar migration in Lis1-defective neurons. Oscillatory association-dissociation behavior of neurons from the glial fiber in four representative individual neurons. A. A cell that immediately adopts multipolar migration. B. Short delay. C. Long delay. D. Oscillatory association over the entire simulated period.

Mentions: Analysis of the neuron-glial association in simulations of reduced Lis1 activity revealed an intriguing unforeseen phenomenon. We found that neuroblasts repeatedly attempt to associate with the glial fiber, displaying an oscillatory association and dissociation with the fiber, especially during the early stages of the neuron lifecycle. The oscillatory behavior began immediately following neuronal proliferation and lasted until completion of the multipolar migration stage. Thus the model, although not explicitly programmed to do so, produced a delay in the neuronal multipolar migration stage process (Figure 5 and the movie in Additional File 3).


How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex.

Setty Y, Chen CC, Secrier M, Skoblov N, Kalamatianos D, Emmott S - BMC Syst Biol (2011)

Delay in multipolar migration in Lis1-defective neurons. Oscillatory association-dissociation behavior of neurons from the glial fiber in four representative individual neurons. A. A cell that immediately adopts multipolar migration. B. Short delay. C. Long delay. D. Oscillatory association over the entire simulated period.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC3198702&req=5

Figure 5: Delay in multipolar migration in Lis1-defective neurons. Oscillatory association-dissociation behavior of neurons from the glial fiber in four representative individual neurons. A. A cell that immediately adopts multipolar migration. B. Short delay. C. Long delay. D. Oscillatory association over the entire simulated period.
Mentions: Analysis of the neuron-glial association in simulations of reduced Lis1 activity revealed an intriguing unforeseen phenomenon. We found that neuroblasts repeatedly attempt to associate with the glial fiber, displaying an oscillatory association and dissociation with the fiber, especially during the early stages of the neuron lifecycle. The oscillatory behavior began immediately following neuronal proliferation and lasted until completion of the multipolar migration stage. Thus the model, although not explicitly programmed to do so, produced a delay in the neuronal multipolar migration stage process (Figure 5 and the movie in Additional File 3).

Bottom Line: Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program.Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies.This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.

View Article: PubMed Central - HTML - PubMed

Affiliation: Computational Science Laboratory, Microsoft Research, Cambridge, CB3 0FB, UK. yaki.setty@gmail.com

ABSTRACT

Background: Neuronal migration, the process by which neurons migrate from their place of origin to their final position in the brain, is a central process for normal brain development and function. Advances in experimental techniques have revealed much about many of the molecular components involved in this process. Notwithstanding these advances, how the molecular machinery works together to govern the migration process has yet to be fully understood. Here we present a computational model of neuronal migration, in which four key molecular entities, Lis1, DCX, Reelin and GABA, form a molecular program that mediates the migration process.

Results: The model simulated the dynamic migration process, consistent with in-vivo observations of morphological, cellular and population-level phenomena. Specifically, the model reproduced migration phases, cellular dynamics and population distributions that concur with experimental observations in normal neuronal development. We tested the model under reduced activity of Lis1 and DCX and found an aberrant development similar to observations in Lis1 and DCX silencing expression experiments. Analysis of the model gave rise to unforeseen insights that could guide future experimental study. Specifically: (1) the model revealed the possibility that under conditions of Lis1 reduced expression, neurons experience an oscillatory neuron-glial association prior to the multipolar stage; and (2) we hypothesized that observed morphology variations in rats and mice may be explained by a single difference in the way that Lis1 and DCX stimulate bipolar motility. From this we make the following predictions: (1) under reduced Lis1 and enhanced DCX expression, we predict a reduced bipolar migration in rats, and (2) under enhanced DCX expression in mice we predict a normal or a higher bipolar migration.

Conclusions: We present here a system-wide computational model of neuronal migration that integrates theory and data within a precise, testable framework. Our model accounts for a range of observable behaviors and affords a computational framework to study aspects of neuronal migration as a complex process that is driven by a relatively simple molecular program. Analysis of the model generated new hypotheses and yet unobserved phenomena that may guide future experimental studies. This paper thus reports a first step toward a comprehensive in-silico model of neuronal migration.

Show MeSH
Related in: MedlinePlus