Limits...
The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively.

Cornaciu I, Boeszoermenyi A, Lindermuth H, Nagy HM, Cerk IK, Ebner C, Salzburger B, Gruber A, Schweiger M, Zechner R, Lass A, Zimmermann R, Oberer M - PLoS ONE (2011)

Bottom Line: Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity.Based on these data, we generated a 3D homology model for the minimal domain.Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated.

View Article: PubMed Central - PubMed

Affiliation: Institute of Molecular Biosciences, University of Graz, Graz, Austria.

ABSTRACT
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated.

Show MeSH

Related in: MedlinePlus

CGI-58 stimulates C-terminal truncation variants of ATGL including ATGL254.TG hydrolase assay with different C-terminal truncations of ATGL, in the presence (*) of purified CGI-58, was performed as described in Figure 2. TG hydrolase activities were normalized to that of full length ATGL ( = 100%). Data are presented as mean+SD. Results are representative of three independent experiments.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198459&req=5

pone-0026349-g004: CGI-58 stimulates C-terminal truncation variants of ATGL including ATGL254.TG hydrolase assay with different C-terminal truncations of ATGL, in the presence (*) of purified CGI-58, was performed as described in Figure 2. TG hydrolase activities were normalized to that of full length ATGL ( = 100%). Data are presented as mean+SD. Results are representative of three independent experiments.

Mentions: In the next experiments we asked whether shortened versions of ATGL can also be stimulated by addition of CGI-58. Therefore, we performed TG hydrolase experiments using full-length ATGL and C-terminally truncated variants in the presence of mCGI-58 and related measured activities to activated full-length ATGL levels. Interestingly, all active fragments of ATGL were stimulated by CGI-58 (Figure 4). Importantly, ATGL254 was also stimulated by CGI-58, suggesting that this fragment of ATGL is still capable of interacting with CGI-58. Consequently, C-terminal residues of ATGL beyond Leu254 are not essential for activation by CGI-58. Shorter constructs, such as ATGL253 and ATGL252, retained virtually no detectable TG hydrolase activity and were not stimulated to a significant extent by CGI-58 (∼77% and 90%, respectively, less than full length ATGL; Figure 4). As expected, all shorter constructs tested (ATGL245 and ATGL235) were inactive and could not be activated by CGI-58 (data not shown). These data clearly demonstrate that ATGL254 is the shortest fragment of mATGL that retains the ability to be activated efficiently by CGI-58.


The minimal domain of adipose triglyceride lipase (ATGL) ranges until leucine 254 and can be activated and inhibited by CGI-58 and G0S2, respectively.

Cornaciu I, Boeszoermenyi A, Lindermuth H, Nagy HM, Cerk IK, Ebner C, Salzburger B, Gruber A, Schweiger M, Zechner R, Lass A, Zimmermann R, Oberer M - PLoS ONE (2011)

CGI-58 stimulates C-terminal truncation variants of ATGL including ATGL254.TG hydrolase assay with different C-terminal truncations of ATGL, in the presence (*) of purified CGI-58, was performed as described in Figure 2. TG hydrolase activities were normalized to that of full length ATGL ( = 100%). Data are presented as mean+SD. Results are representative of three independent experiments.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198459&req=5

pone-0026349-g004: CGI-58 stimulates C-terminal truncation variants of ATGL including ATGL254.TG hydrolase assay with different C-terminal truncations of ATGL, in the presence (*) of purified CGI-58, was performed as described in Figure 2. TG hydrolase activities were normalized to that of full length ATGL ( = 100%). Data are presented as mean+SD. Results are representative of three independent experiments.
Mentions: In the next experiments we asked whether shortened versions of ATGL can also be stimulated by addition of CGI-58. Therefore, we performed TG hydrolase experiments using full-length ATGL and C-terminally truncated variants in the presence of mCGI-58 and related measured activities to activated full-length ATGL levels. Interestingly, all active fragments of ATGL were stimulated by CGI-58 (Figure 4). Importantly, ATGL254 was also stimulated by CGI-58, suggesting that this fragment of ATGL is still capable of interacting with CGI-58. Consequently, C-terminal residues of ATGL beyond Leu254 are not essential for activation by CGI-58. Shorter constructs, such as ATGL253 and ATGL252, retained virtually no detectable TG hydrolase activity and were not stimulated to a significant extent by CGI-58 (∼77% and 90%, respectively, less than full length ATGL; Figure 4). As expected, all shorter constructs tested (ATGL245 and ATGL235) were inactive and could not be activated by CGI-58 (data not shown). These data clearly demonstrate that ATGL254 is the shortest fragment of mATGL that retains the ability to be activated efficiently by CGI-58.

Bottom Line: Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity.Based on these data, we generated a 3D homology model for the minimal domain.Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated.

View Article: PubMed Central - PubMed

Affiliation: Institute of Molecular Biosciences, University of Graz, Graz, Austria.

ABSTRACT
Adipose triglyceride lipase (ATGL) is the rate-limiting enzyme of lipolysis. ATGL specifically hydrolyzes triacylglycerols (TGs), thereby generating diacylglycerols and free fatty acids. ATGL's enzymatic activity is co-activated by the protein comparative gene identification-58 (CGI-58) and inhibited by the protein G0/G1 switch gene 2 (G0S2). The enzyme is predicted to act through a catalytic dyad (Ser47, Asp166) located within the conserved patatin domain (Ile10-Leu178). Yet, neither an experimentally determined 3D structure nor a model of ATGL is currently available, which would help to understand how CGI-58 and G0S2 modulate ATGL's activity. In this study we determined the minimal active domain of ATGL. This minimal fragment of ATGL could still be activated and inhibited by CGI-58 and G0S2, respectively. Furthermore, we show that this minimal domain is sufficient for protein-protein interaction of ATGL with its regulatory proteins. Based on these data, we generated a 3D homology model for the minimal domain. It strengthens our experimental finding that amino acids between Leu178 and Leu254 are essential for the formation of a stable protein domain related to the patatin fold. Our data provide insights into the structure-function relationship of ATGL and indicate higher structural similarities in the N-terminal halves of mammalian patatin-like phospholipase domain containing proteins, (PNPLA1, -2,- 3 and -5) than originally anticipated.

Show MeSH
Related in: MedlinePlus