Limits...
FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection.

Poritz MA, Blaschke AJ, Byington CL, Meyers L, Nilsson K, Jones DE, Thatcher SA, Robbins T, Lingenfelter B, Amiott E, Herbener A, Daly J, Dobrowolski SF, Teng DH, Ririe KM - PLoS ONE (2011)

Bottom Line: FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time.Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens.We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon.

View Article: PubMed Central - PubMed

Affiliation: Idaho Technology, Inc., Salt Lake City, Utah, United States of America. mark_poritz@idahotech.com

ABSTRACT
The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the "FilmArray", which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon.

Show MeSH

Related in: MedlinePlus

Detection rates of the FilmArray RP pouch compared to DFA.Pediatric NPA samples (N = 328) were tested either by DFA at PCMC (yellow bars) or on the FilmArray (Blue bars). The percent of samples in which no virus (Negative) or one of the indicated viruses was detected is shown. The viruses are grouped into those in which both DFA and FilmArray assays are available or only the FilmArray assay is available.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198457&req=5

pone-0026047-g005: Detection rates of the FilmArray RP pouch compared to DFA.Pediatric NPA samples (N = 328) were tested either by DFA at PCMC (yellow bars) or on the FilmArray (Blue bars). The percent of samples in which no virus (Negative) or one of the indicated viruses was detected is shown. The viruses are grouped into those in which both DFA and FilmArray assays are available or only the FilmArray assay is available.

Mentions: The FilmArray, with 21 respiratory pathogen assays, identified significantly more pathogens than DFA in these pediatric samples (Figure 5). FilmArray testing decreased the number of clinical samples with no pathogen identified from 63% by DFA to 19% by FilmArray (p value<0.0001). For the pathogens tested by DFA, the concordance between FilmArray and DFA testing was high. Positive percent agreement with DFA ranged from 55%–100%, although for most the agreement was >90% (Table 2). The two pathogens with the lowest percent agreement were PIV1 (55%) and hMPV (67%). Some samples that were PIV1 positive by DFA were PIV3 positive by FilmArray and were confirmed to be PIV3 by sequence analysis. Because the FilmArray testing was done retrospectively, DFA could not be repeated. For hMPV, there were too few positive samples to fully interpret discordant results.


FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection.

Poritz MA, Blaschke AJ, Byington CL, Meyers L, Nilsson K, Jones DE, Thatcher SA, Robbins T, Lingenfelter B, Amiott E, Herbener A, Daly J, Dobrowolski SF, Teng DH, Ririe KM - PLoS ONE (2011)

Detection rates of the FilmArray RP pouch compared to DFA.Pediatric NPA samples (N = 328) were tested either by DFA at PCMC (yellow bars) or on the FilmArray (Blue bars). The percent of samples in which no virus (Negative) or one of the indicated viruses was detected is shown. The viruses are grouped into those in which both DFA and FilmArray assays are available or only the FilmArray assay is available.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198457&req=5

pone-0026047-g005: Detection rates of the FilmArray RP pouch compared to DFA.Pediatric NPA samples (N = 328) were tested either by DFA at PCMC (yellow bars) or on the FilmArray (Blue bars). The percent of samples in which no virus (Negative) or one of the indicated viruses was detected is shown. The viruses are grouped into those in which both DFA and FilmArray assays are available or only the FilmArray assay is available.
Mentions: The FilmArray, with 21 respiratory pathogen assays, identified significantly more pathogens than DFA in these pediatric samples (Figure 5). FilmArray testing decreased the number of clinical samples with no pathogen identified from 63% by DFA to 19% by FilmArray (p value<0.0001). For the pathogens tested by DFA, the concordance between FilmArray and DFA testing was high. Positive percent agreement with DFA ranged from 55%–100%, although for most the agreement was >90% (Table 2). The two pathogens with the lowest percent agreement were PIV1 (55%) and hMPV (67%). Some samples that were PIV1 positive by DFA were PIV3 positive by FilmArray and were confirmed to be PIV3 by sequence analysis. Because the FilmArray testing was done retrospectively, DFA could not be repeated. For hMPV, there were too few positive samples to fully interpret discordant results.

Bottom Line: FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time.Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens.We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon.

View Article: PubMed Central - PubMed

Affiliation: Idaho Technology, Inc., Salt Lake City, Utah, United States of America. mark_poritz@idahotech.com

ABSTRACT
The ideal clinical diagnostic system should deliver rapid, sensitive, specific and reproducible results while minimizing the requirements for specialized laboratory facilities and skilled technicians. We describe an integrated diagnostic platform, the "FilmArray", which fully automates the detection and identification of multiple organisms from a single sample in about one hour. An unprocessed biologic/clinical sample is subjected to nucleic acid purification, reverse transcription, a high-order nested multiplex polymerase chain reaction and amplicon melt curve analysis. Biochemical reactions are enclosed in a disposable pouch, minimizing the PCR contamination risk. FilmArray has the potential to detect greater than 100 different nucleic acid targets at one time. These features make the system well-suited for molecular detection of infectious agents. Validation of the FilmArray technology was achieved through development of a panel of assays capable of identifying 21 common viral and bacterial respiratory pathogens. Initial testing of the system using both cultured organisms and clinical nasal aspirates obtained from children demonstrated an analytical and clinical sensitivity and specificity comparable to existing diagnostic platforms. We demonstrate that automated identification of pathogens from their corresponding target amplicon(s) can be accomplished by analysis of the DNA melting curve of the amplicon.

Show MeSH
Related in: MedlinePlus