Limits...
microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4.

Tano N, Kim HW, Ashraf M - PLoS ONE (2011)

Bottom Line: Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration.To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs.In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America.

ABSTRACT
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

Show MeSH

Related in: MedlinePlus

Lentivirus-mediated knockdown of miR-150 augments CXCR4 expression and mobilization of MNCs.(A) Structures of Lenti-miR-150 inhibitor and Lenti-Sc which contains mCherry reporter gene (red signal), (B) Titeration and transduction efficiency of lentivirus-mediated miR-150 inhibition in MNCs was evaluated by mCherry signal under microsope. (C) Lentivirus-mediated knockdown of miR-150 elevated CXCR4 protein expression in MNCs. (D) Number of BM-MNCs mobilized to PB was markedly increased in peripheral circulation of BN transplantation of mice which received MNCs lacking miR-150.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198444&req=5

pone-0023114-g004: Lentivirus-mediated knockdown of miR-150 augments CXCR4 expression and mobilization of MNCs.(A) Structures of Lenti-miR-150 inhibitor and Lenti-Sc which contains mCherry reporter gene (red signal), (B) Titeration and transduction efficiency of lentivirus-mediated miR-150 inhibition in MNCs was evaluated by mCherry signal under microsope. (C) Lentivirus-mediated knockdown of miR-150 elevated CXCR4 protein expression in MNCs. (D) Number of BM-MNCs mobilized to PB was markedly increased in peripheral circulation of BN transplantation of mice which received MNCs lacking miR-150.

Mentions: To further examine the involvement of miR-150 in stem cell mobilization in vivo, we performed mouse BM transplantation experiments by using irradiated mice and lentiviral miR-150 inhibitor. Lentivirus containing mCherry (red, reporter) was generated by co-transfection of 293Ta cells with Lentiviral vectors and miR-150 inhibitor or scramble (Figure 4A). We produced Lentivirus containing anti-miR-150 and miR-scramble and transduced to MNCs isolated from healthy mice. Lentivirus transduction efficiency was confirmed by red signal of mCherry under microscope. Figure 4B showed approximately >90% of MNCs expressed mCherry at 2 days of Lentivirus infection. In addition, knockdown of miR-150 in MNCs by lentiviral vector significantly increased CXCR4 expression (Figure 4C). Interestingly, we found that in vivo transplantation of MNCs lacking miR-150 expression (anti-miR-150MNCs) into the irradiated wild type mice resulted in increased number of MNCs in PB released from BM as compared to that of MNCs transducing scramble (ScMNCs), indicating that miR-150 plays a critical role in MNC mobilization in BM through Cxcr4 regulation (Figure 4D).


microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4.

Tano N, Kim HW, Ashraf M - PLoS ONE (2011)

Lentivirus-mediated knockdown of miR-150 augments CXCR4 expression and mobilization of MNCs.(A) Structures of Lenti-miR-150 inhibitor and Lenti-Sc which contains mCherry reporter gene (red signal), (B) Titeration and transduction efficiency of lentivirus-mediated miR-150 inhibition in MNCs was evaluated by mCherry signal under microsope. (C) Lentivirus-mediated knockdown of miR-150 elevated CXCR4 protein expression in MNCs. (D) Number of BM-MNCs mobilized to PB was markedly increased in peripheral circulation of BN transplantation of mice which received MNCs lacking miR-150.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198444&req=5

pone-0023114-g004: Lentivirus-mediated knockdown of miR-150 augments CXCR4 expression and mobilization of MNCs.(A) Structures of Lenti-miR-150 inhibitor and Lenti-Sc which contains mCherry reporter gene (red signal), (B) Titeration and transduction efficiency of lentivirus-mediated miR-150 inhibition in MNCs was evaluated by mCherry signal under microsope. (C) Lentivirus-mediated knockdown of miR-150 elevated CXCR4 protein expression in MNCs. (D) Number of BM-MNCs mobilized to PB was markedly increased in peripheral circulation of BN transplantation of mice which received MNCs lacking miR-150.
Mentions: To further examine the involvement of miR-150 in stem cell mobilization in vivo, we performed mouse BM transplantation experiments by using irradiated mice and lentiviral miR-150 inhibitor. Lentivirus containing mCherry (red, reporter) was generated by co-transfection of 293Ta cells with Lentiviral vectors and miR-150 inhibitor or scramble (Figure 4A). We produced Lentivirus containing anti-miR-150 and miR-scramble and transduced to MNCs isolated from healthy mice. Lentivirus transduction efficiency was confirmed by red signal of mCherry under microscope. Figure 4B showed approximately >90% of MNCs expressed mCherry at 2 days of Lentivirus infection. In addition, knockdown of miR-150 in MNCs by lentiviral vector significantly increased CXCR4 expression (Figure 4C). Interestingly, we found that in vivo transplantation of MNCs lacking miR-150 expression (anti-miR-150MNCs) into the irradiated wild type mice resulted in increased number of MNCs in PB released from BM as compared to that of MNCs transducing scramble (ScMNCs), indicating that miR-150 plays a critical role in MNC mobilization in BM through Cxcr4 regulation (Figure 4D).

Bottom Line: Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration.To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs.In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America.

ABSTRACT
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

Show MeSH
Related in: MedlinePlus