Limits...
microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4.

Tano N, Kim HW, Ashraf M - PLoS ONE (2011)

Bottom Line: Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration.To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs.In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America.

ABSTRACT
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

Show MeSH

Related in: MedlinePlus

miR-150 targets Cxcr4 and regulates MNC migration.(A) A putative target site of miR-150 highly conserved in the Cxcr4 mRNA 3′-UTR as predicted by computational analysis. (B) miR-150 expression was decreased in BM-MNCs after AMI as validated by real-time PCR. (C) CXCR4 protein expression in MNCs significantly increased by transfection with miR-150 inhibitor. (D) BM-MNCs isolated from mice with LAD ligation enhanced migration capacity of BM-MNCs in response to SDF-1α as evaluated by transwell migration system. Transfection of wild type MNCs with anti-miR-150 also increased the number of migrating cells.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198444&req=5

pone-0023114-g003: miR-150 targets Cxcr4 and regulates MNC migration.(A) A putative target site of miR-150 highly conserved in the Cxcr4 mRNA 3′-UTR as predicted by computational analysis. (B) miR-150 expression was decreased in BM-MNCs after AMI as validated by real-time PCR. (C) CXCR4 protein expression in MNCs significantly increased by transfection with miR-150 inhibitor. (D) BM-MNCs isolated from mice with LAD ligation enhanced migration capacity of BM-MNCs in response to SDF-1α as evaluated by transwell migration system. Transfection of wild type MNCs with anti-miR-150 also increased the number of migrating cells.

Mentions: Since miR microarray analysis revealed that miR-29c, miR-98/let-7 family, miR-150, miR-195 and miR-494 expression was significantly downregulated in BM-derived MNCs, we extensively examined databases for predicted targets of these miRNAs involved in MNC mobilization. Computational target prediction analysis indicated that Cxcr4 is one of the consensus putative targets of miR-150 relevant to stem cell mobilization (Figure 3A). To verify microarray profiling results, we performed real time PCR and confirmed that miR-150 expression was markedly reduced in BM-derived MNCs from AMI mice (Figure 3B). As shown in Figure 3C, knockdown of miR-150 by anti-miR-150 markedly reduced CXCR4 protein expression in MNCs, indicating CXCR4 is a putative target of miR-150 in MNCs. To investigate the role of miR-150 in migration of MNCs, we performed in vitro cell migration assay by using Boyden Chamber transwell system. MNCs isolated from BM of AMI mice exhibited the higher number of migrated cells in response to SDF-1α as compared to control MNCs (Figure 3D, upper). Interestingly, knockdown of miR-150 by transfection with anti-miR-150 significantly increased the number of migrated MNCs when compared to scramble transfection, suggesting miR-150 is critically involved in MNC migration (Figure 3D, bottom).


microRNA-150 regulates mobilization and migration of bone marrow-derived mononuclear cells by targeting Cxcr4.

Tano N, Kim HW, Ashraf M - PLoS ONE (2011)

miR-150 targets Cxcr4 and regulates MNC migration.(A) A putative target site of miR-150 highly conserved in the Cxcr4 mRNA 3′-UTR as predicted by computational analysis. (B) miR-150 expression was decreased in BM-MNCs after AMI as validated by real-time PCR. (C) CXCR4 protein expression in MNCs significantly increased by transfection with miR-150 inhibitor. (D) BM-MNCs isolated from mice with LAD ligation enhanced migration capacity of BM-MNCs in response to SDF-1α as evaluated by transwell migration system. Transfection of wild type MNCs with anti-miR-150 also increased the number of migrating cells.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198444&req=5

pone-0023114-g003: miR-150 targets Cxcr4 and regulates MNC migration.(A) A putative target site of miR-150 highly conserved in the Cxcr4 mRNA 3′-UTR as predicted by computational analysis. (B) miR-150 expression was decreased in BM-MNCs after AMI as validated by real-time PCR. (C) CXCR4 protein expression in MNCs significantly increased by transfection with miR-150 inhibitor. (D) BM-MNCs isolated from mice with LAD ligation enhanced migration capacity of BM-MNCs in response to SDF-1α as evaluated by transwell migration system. Transfection of wild type MNCs with anti-miR-150 also increased the number of migrating cells.
Mentions: Since miR microarray analysis revealed that miR-29c, miR-98/let-7 family, miR-150, miR-195 and miR-494 expression was significantly downregulated in BM-derived MNCs, we extensively examined databases for predicted targets of these miRNAs involved in MNC mobilization. Computational target prediction analysis indicated that Cxcr4 is one of the consensus putative targets of miR-150 relevant to stem cell mobilization (Figure 3A). To verify microarray profiling results, we performed real time PCR and confirmed that miR-150 expression was markedly reduced in BM-derived MNCs from AMI mice (Figure 3B). As shown in Figure 3C, knockdown of miR-150 by anti-miR-150 markedly reduced CXCR4 protein expression in MNCs, indicating CXCR4 is a putative target of miR-150 in MNCs. To investigate the role of miR-150 in migration of MNCs, we performed in vitro cell migration assay by using Boyden Chamber transwell system. MNCs isolated from BM of AMI mice exhibited the higher number of migrated cells in response to SDF-1α as compared to control MNCs (Figure 3D, upper). Interestingly, knockdown of miR-150 by transfection with anti-miR-150 significantly increased the number of migrated MNCs when compared to scramble transfection, suggesting miR-150 is critically involved in MNC migration (Figure 3D, bottom).

Bottom Line: Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration.To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs.In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

View Article: PubMed Central - PubMed

Affiliation: Department of Pathology and Lab Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America.

ABSTRACT
The interaction between chemokine receptor type 4 (CXCR4) and its ligand, stromal cell-derived factor (SDF)-1, plays an important role in stem cell mobilization and migration in ischemic tissues. MicroRNAs (miRs) are key regulators of stem cell function and are involved in regulation of stem cell survival and differentiation to adopt different cell lineages. In this study, we show that ischemia inhibits the expression of miR-150 in BM-derived mononuclear cells (MNC) and activates its target Cxcr4 gene. Our results show that miR-150/CXCR4 cascade enhances MNC mobilization and migration. By using mouse acute myocardial infarction (MI) model, we found that MNCs in peripheral blood (PB) were increased significantly at day 5 after AMI as compared to control group and the number of CXCR4 positive MNCs both in bone marrow (BM) and PB was also markedly increased after MI. Analysis by microarray-based miRNA profiling and real-time PCR revealed that the expression of miR-150 which targets Cxcr4 gene as predicted was significantly downregulated in BM-MNCs after MI. Abrogation of miR-150 markedly increased CXCR4 protein expression suggesting its target gene. To show that miR-150 regulates MNC mobilization, knockdown of miR-150 in BM-MNCs by specific antisense inhibitor resulted in their higher migration ability in vitro as compared to scramble-transfected MNCs. Furthermore, in vivo BM transplantation of MNCs lacking miR-150 expression by lentiviral vector into the irradiated wild type mice resulted in the increased number of MNCs in PB after AMI as compared to control. In conclusion, this study demonstrates that ischemia mobilizes BM stem cells via miR-150/CXCR4 dependent mechanism and miR-150 may be a novel therapeutic target for stem cell migration to the ischemic tissue for neovascularization and repair.

Show MeSH
Related in: MedlinePlus