Limits...
High levels of sediment contamination have little influence on estuarine beach fish communities.

McKinley AC, Dafforn KA, Taylor MD, Johnston EL - PLoS ONE (2011)

Bottom Line: Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination.Sediment PAH concentrations were not significantly related to the fish assemblage.These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

View Article: PubMed Central - PubMed

Affiliation: Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.

ABSTRACT
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

Show MeSH

Related in: MedlinePlus

Mean (±SE) community level indicators by zone/estuary.Including a) Species Richness, b) Shannon Diversity, c) Biomass, d) Average Fish Weight, e) Year 1 Abundance, f) Year 2 Abundance.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198393&req=5

pone-0026353-g003: Mean (±SE) community level indicators by zone/estuary.Including a) Species Richness, b) Shannon Diversity, c) Biomass, d) Average Fish Weight, e) Year 1 Abundance, f) Year 2 Abundance.

Mentions: Species richness, Shannon diversity, and fish biomass were all significantly greater in the inner zones compared to the outer zones (Table 4 Figure 3a,b,c), while no main effects or interaction terms were detected for any of these measures for disturbance category (Table 4). Species richness and Shannon diversity also showed significant variation by site (Table 4a,b). Average fish weight was greater in the outer zones of all estuaries except Port Kembla and Jervis Bay, where the average fish weight was approximately equal between zones (Table 4, Figure 3d). Port Jackson displayed a trend towards having higher fish biomass than other estuaries across both zones (Figure 3c) while Port Kembla displayed a trend towards higher average fish weight than other estuaries (Figure 3d). The pattern of increased biomass, species richness and Shannon diversity in the inner estuary was weakest for Port Kembla, where we also observed the smallest difference between zones for physico-chemical variables. Interestingly, the outer harbor of Port Kembla was the only outer zone to contain substantial sediment contamination but this did not relate to reduced fish biomass, species richness, or Shannon diversity relative to other outer zones.


High levels of sediment contamination have little influence on estuarine beach fish communities.

McKinley AC, Dafforn KA, Taylor MD, Johnston EL - PLoS ONE (2011)

Mean (±SE) community level indicators by zone/estuary.Including a) Species Richness, b) Shannon Diversity, c) Biomass, d) Average Fish Weight, e) Year 1 Abundance, f) Year 2 Abundance.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198393&req=5

pone-0026353-g003: Mean (±SE) community level indicators by zone/estuary.Including a) Species Richness, b) Shannon Diversity, c) Biomass, d) Average Fish Weight, e) Year 1 Abundance, f) Year 2 Abundance.
Mentions: Species richness, Shannon diversity, and fish biomass were all significantly greater in the inner zones compared to the outer zones (Table 4 Figure 3a,b,c), while no main effects or interaction terms were detected for any of these measures for disturbance category (Table 4). Species richness and Shannon diversity also showed significant variation by site (Table 4a,b). Average fish weight was greater in the outer zones of all estuaries except Port Kembla and Jervis Bay, where the average fish weight was approximately equal between zones (Table 4, Figure 3d). Port Jackson displayed a trend towards having higher fish biomass than other estuaries across both zones (Figure 3c) while Port Kembla displayed a trend towards higher average fish weight than other estuaries (Figure 3d). The pattern of increased biomass, species richness and Shannon diversity in the inner estuary was weakest for Port Kembla, where we also observed the smallest difference between zones for physico-chemical variables. Interestingly, the outer harbor of Port Kembla was the only outer zone to contain substantial sediment contamination but this did not relate to reduced fish biomass, species richness, or Shannon diversity relative to other outer zones.

Bottom Line: Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination.Sediment PAH concentrations were not significantly related to the fish assemblage.These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

View Article: PubMed Central - PubMed

Affiliation: Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.

ABSTRACT
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

Show MeSH
Related in: MedlinePlus