Limits...
High levels of sediment contamination have little influence on estuarine beach fish communities.

McKinley AC, Dafforn KA, Taylor MD, Johnston EL - PLoS ONE (2011)

Bottom Line: Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination.Sediment PAH concentrations were not significantly related to the fish assemblage.These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

View Article: PubMed Central - PubMed

Affiliation: Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.

ABSTRACT
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

Show MeSH

Related in: MedlinePlus

Location of study sites in the six focal estuaries: a) Port Jackson (heavily modified), b) Botany Bay (heavily modified), c) Port Hacking (relatively unmodified), d) Port Kembla (heavily modified), e) Jervis Bay (relatively unmodified), and f) Clyde River (relatively unmodified).Filled diamonds (♦) indicates outer zone sites. Filled circles (•) indicates inner zone sites.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3198393&req=5

pone-0026353-g001: Location of study sites in the six focal estuaries: a) Port Jackson (heavily modified), b) Botany Bay (heavily modified), c) Port Hacking (relatively unmodified), d) Port Kembla (heavily modified), e) Jervis Bay (relatively unmodified), and f) Clyde River (relatively unmodified).Filled diamonds (♦) indicates outer zone sites. Filled circles (•) indicates inner zone sites.

Mentions: Fish were sampled in six permanently open estuaries along the south coast of New South Wales, Australia. These included three heavily modified estuaries, Port Jackson (33°44.258′S, 151°16.542′E), Botany Bay (33°59.352′S, 151°11.433′E), and Port Kembla (34°28.121′S, 150°54.410′E), and three relatively unmodified estuaries, Port Hacking (34°04.680′S, 151°09.311′E), Jervis Bay (35°04.762′S, 150°44.858′E), and the Clyde River (35°44.233′S, 150°14.272′E) (Figure 1). The three heavily modified estuaries are all anthropogenically disturbed environments close to large urban and industrial areas and are subject to intense commercial and recreational boating traffic, historic and ongoing contamination, concentrated recreational fishing activity, frequent dredging for navigation and construction, and substantial urbanization of their shoreline and catchment. In comparison, the relatively unmodified estuaries have less concentrated fishing activity, less boating traffic (almost none of which is commercial), less urbanization of the coastline and catchment, and virtually no heavy industry [22], [23]. While these estuaries do have some degree of agricultural land use in their catchment, the majority of the catchment in all of the relatively unmodified estuaries is within conservation areas, forestry zones, or areas where anthropogenic utilization is negligible [24]. Both the Clyde River (within Bateman's Bay Marine Park) and Jervis Bay (Jervis Bay Marine Park) are within marine parks. Port Hacking is located between the suburbs of southern Sydney and the forested slopes of Royal National Park, which lines the southern border of the estuary. While not strictly within a marine park, Port Hacking's catchment is largely intact due to its proximity to the Royal National Park and there is no major industrial activity within the estuary, though navigation channels in the outer zone are periodically dredged [23]. Previous monitoring indicates that the heavily modified estuaries are also nutrient enriched, whilst nutrient levels in the relatively unmodified estuaries are less elevated [22].


High levels of sediment contamination have little influence on estuarine beach fish communities.

McKinley AC, Dafforn KA, Taylor MD, Johnston EL - PLoS ONE (2011)

Location of study sites in the six focal estuaries: a) Port Jackson (heavily modified), b) Botany Bay (heavily modified), c) Port Hacking (relatively unmodified), d) Port Kembla (heavily modified), e) Jervis Bay (relatively unmodified), and f) Clyde River (relatively unmodified).Filled diamonds (♦) indicates outer zone sites. Filled circles (•) indicates inner zone sites.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3198393&req=5

pone-0026353-g001: Location of study sites in the six focal estuaries: a) Port Jackson (heavily modified), b) Botany Bay (heavily modified), c) Port Hacking (relatively unmodified), d) Port Kembla (heavily modified), e) Jervis Bay (relatively unmodified), and f) Clyde River (relatively unmodified).Filled diamonds (♦) indicates outer zone sites. Filled circles (•) indicates inner zone sites.
Mentions: Fish were sampled in six permanently open estuaries along the south coast of New South Wales, Australia. These included three heavily modified estuaries, Port Jackson (33°44.258′S, 151°16.542′E), Botany Bay (33°59.352′S, 151°11.433′E), and Port Kembla (34°28.121′S, 150°54.410′E), and three relatively unmodified estuaries, Port Hacking (34°04.680′S, 151°09.311′E), Jervis Bay (35°04.762′S, 150°44.858′E), and the Clyde River (35°44.233′S, 150°14.272′E) (Figure 1). The three heavily modified estuaries are all anthropogenically disturbed environments close to large urban and industrial areas and are subject to intense commercial and recreational boating traffic, historic and ongoing contamination, concentrated recreational fishing activity, frequent dredging for navigation and construction, and substantial urbanization of their shoreline and catchment. In comparison, the relatively unmodified estuaries have less concentrated fishing activity, less boating traffic (almost none of which is commercial), less urbanization of the coastline and catchment, and virtually no heavy industry [22], [23]. While these estuaries do have some degree of agricultural land use in their catchment, the majority of the catchment in all of the relatively unmodified estuaries is within conservation areas, forestry zones, or areas where anthropogenic utilization is negligible [24]. Both the Clyde River (within Bateman's Bay Marine Park) and Jervis Bay (Jervis Bay Marine Park) are within marine parks. Port Hacking is located between the suburbs of southern Sydney and the forested slopes of Royal National Park, which lines the southern border of the estuary. While not strictly within a marine park, Port Hacking's catchment is largely intact due to its proximity to the Royal National Park and there is no major industrial activity within the estuary, though navigation channels in the outer zone are periodically dredged [23]. Previous monitoring indicates that the heavily modified estuaries are also nutrient enriched, whilst nutrient levels in the relatively unmodified estuaries are less elevated [22].

Bottom Line: Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination.Sediment PAH concentrations were not significantly related to the fish assemblage.These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

View Article: PubMed Central - PubMed

Affiliation: Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.

ABSTRACT
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination.

Show MeSH
Related in: MedlinePlus