Limits...
Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca).

Eeva T, Ruuskanen S, Salminen JP, Belskii E, Järvinen A, Kerimov A, Korpimäki E, Krams I, Moreno J, Morosinotto C, Mänd R, Orell M, Qvarnström A, Siitari H, Slater FM, Tilgar V, Visser ME, Winkel W, Zang H, Laaksonen T - Oecologia (2010)

Bottom Line: We found that the concentrations and proportions of lutein and some other xanthophylls in the egg yolks decreased from Central Europe northwards.Concentrations of β-carotene and zeaxanthin did not show any obvious geographical gradients.Further studies are needed to test the fitness effects of this geographical variation.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, University of Turku, Turku, Finland. tapio.eeva@utu.fi

ABSTRACT
Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female's diet at the time of egg formation. Spatial and temporal differences in carotenoid availability may thus be reflected in yolk concentrations. To assess whether yolk carotenoid concentrations or carotenoid profiles show any large-scale geographical trends or differences among habitats, we collected yolk samples from 16 European populations of the pied flycatcher, Ficedula hypoleuca. We found that the concentrations and proportions of lutein and some other xanthophylls in the egg yolks decreased from Central Europe northwards. The most southern population (which is also the one found at the highest altitude) also showed relatively low carotenoid levels. Concentrations of β-carotene and zeaxanthin did not show any obvious geographical gradients. Egg yolks also contained proportionally more lutein and other xanthophylls in deciduous than in mixed or coniferous habitats. We suggest that latitudinal gradients in lutein and xanthophylls reflect the lower availability of lutein-rich food items in the northern F. hypoleuca populations and in montane southern populations, which start egg-laying earlier relative to tree phenology than the Central European populations. Similarly, among-habitat variation is likely to reflect the better availability of lutein-rich food in deciduous forests. Our study is the first to indicate that the concentration and profile of yolk carotenoids may show large-scale spatial variation among populations in different parts of the species' geographical range. Further studies are needed to test the fitness effects of this geographical variation.

Show MeSH

Related in: MedlinePlus

Latitudinal variation in Ficedula hypoleuca egg yolk carotenoid concentrations (d.w.) across 16 European populations. Open symbols (triangles, coniferous; squares, mixed; circles, deciduous) show predicted values (±95% c.l.) from the GLMM models presented in Table 2. Crosses show the actual population means with a regression line. Note that the variation in the predictions in Figs. 3, 4 and 5 is not residual variation but variation predicted by other factors in the model
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC3197936&req=5

Fig3: Latitudinal variation in Ficedula hypoleuca egg yolk carotenoid concentrations (d.w.) across 16 European populations. Open symbols (triangles, coniferous; squares, mixed; circles, deciduous) show predicted values (±95% c.l.) from the GLMM models presented in Table 2. Crosses show the actual population means with a regression line. Note that the variation in the predictions in Figs. 3, 4 and 5 is not residual variation but variation predicted by other factors in the model

Mentions: Mean yolk carotenoid concentrations in each population are shown in Fig. 2. The lutein concentrations of F. hypoleuca yolks showed a significant quadratic relationship with latitude: concentrations appeared to be moderate in the most southerly population (Spain), highest in Central Europe (i.e., 50–55°N), and decreased again towards the north (Table 2; Fig. 3a). Lutein concentration was also significantly higher in deciduous than in coniferous forests (Tukey’s test: t = −3.94, df = 36.4, p = 0.0052), and marginally higher in deciduous than in mixed forests (Tukey’s test: t = 2.59, df = 12.5, p = 0.058), while there was no difference between coniferous and mixed forests (Tukey’s test: t = −0.52, df = 11.3, p = 0.86). The interaction between latitude and habitat indicates that latitudinal decrease in lutein level was stronger in deciduous than in coniferous or mixed forests (Table 2; Fig. 3a). Unidentified xanthophylls showed very similar patterns to lutein relative to latitude and habitat, though there was no significant interaction between the two variables (Table 2; Fig. 3b). Other unidentified carotenoids showed an increasing quadratic trend towards the north (Table 2; Fig. 3c). Their concentration was lower in deciduous forests than in mixed or coniferous forests (Tukey’s test: deciduous vs. mixed: t = −2.57, df = 13.7, p = 0.047; deciduous vs. coniferous: t = 3.47, df = 46.7, p = 0.0069). Two of the carotenoids, zeaxanthin and β-carotene, showed no clear geographical trends (Fig 3d, e), and did not differ significantly among habitats (p > 0.05). The total carotenoid concentration showed a quadratic trend with latitude (Table 2; Fig. 3f), as well as a more linear decreasing trend from west to east (Table 2; figure not shown). Altitude did not significantly explain the variation in the concentrations of any of the carotenoids (p > 0.05).Table 2


Geographical trends in the yolk carotenoid composition of the pied flycatcher (Ficedula hypoleuca).

Eeva T, Ruuskanen S, Salminen JP, Belskii E, Järvinen A, Kerimov A, Korpimäki E, Krams I, Moreno J, Morosinotto C, Mänd R, Orell M, Qvarnström A, Siitari H, Slater FM, Tilgar V, Visser ME, Winkel W, Zang H, Laaksonen T - Oecologia (2010)

Latitudinal variation in Ficedula hypoleuca egg yolk carotenoid concentrations (d.w.) across 16 European populations. Open symbols (triangles, coniferous; squares, mixed; circles, deciduous) show predicted values (±95% c.l.) from the GLMM models presented in Table 2. Crosses show the actual population means with a regression line. Note that the variation in the predictions in Figs. 3, 4 and 5 is not residual variation but variation predicted by other factors in the model
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC3197936&req=5

Fig3: Latitudinal variation in Ficedula hypoleuca egg yolk carotenoid concentrations (d.w.) across 16 European populations. Open symbols (triangles, coniferous; squares, mixed; circles, deciduous) show predicted values (±95% c.l.) from the GLMM models presented in Table 2. Crosses show the actual population means with a regression line. Note that the variation in the predictions in Figs. 3, 4 and 5 is not residual variation but variation predicted by other factors in the model
Mentions: Mean yolk carotenoid concentrations in each population are shown in Fig. 2. The lutein concentrations of F. hypoleuca yolks showed a significant quadratic relationship with latitude: concentrations appeared to be moderate in the most southerly population (Spain), highest in Central Europe (i.e., 50–55°N), and decreased again towards the north (Table 2; Fig. 3a). Lutein concentration was also significantly higher in deciduous than in coniferous forests (Tukey’s test: t = −3.94, df = 36.4, p = 0.0052), and marginally higher in deciduous than in mixed forests (Tukey’s test: t = 2.59, df = 12.5, p = 0.058), while there was no difference between coniferous and mixed forests (Tukey’s test: t = −0.52, df = 11.3, p = 0.86). The interaction between latitude and habitat indicates that latitudinal decrease in lutein level was stronger in deciduous than in coniferous or mixed forests (Table 2; Fig. 3a). Unidentified xanthophylls showed very similar patterns to lutein relative to latitude and habitat, though there was no significant interaction between the two variables (Table 2; Fig. 3b). Other unidentified carotenoids showed an increasing quadratic trend towards the north (Table 2; Fig. 3c). Their concentration was lower in deciduous forests than in mixed or coniferous forests (Tukey’s test: deciduous vs. mixed: t = −2.57, df = 13.7, p = 0.047; deciduous vs. coniferous: t = 3.47, df = 46.7, p = 0.0069). Two of the carotenoids, zeaxanthin and β-carotene, showed no clear geographical trends (Fig 3d, e), and did not differ significantly among habitats (p > 0.05). The total carotenoid concentration showed a quadratic trend with latitude (Table 2; Fig. 3f), as well as a more linear decreasing trend from west to east (Table 2; figure not shown). Altitude did not significantly explain the variation in the concentrations of any of the carotenoids (p > 0.05).Table 2

Bottom Line: We found that the concentrations and proportions of lutein and some other xanthophylls in the egg yolks decreased from Central Europe northwards.Concentrations of β-carotene and zeaxanthin did not show any obvious geographical gradients.Further studies are needed to test the fitness effects of this geographical variation.

View Article: PubMed Central - PubMed

Affiliation: Department of Biology, University of Turku, Turku, Finland. tapio.eeva@utu.fi

ABSTRACT
Carotenoids in the egg yolks of birds are considered to be important antioxidants and immune stimulants during the rapid growth of embryos. Yolk carotenoid composition is strongly affected by the carotenoid composition of the female's diet at the time of egg formation. Spatial and temporal differences in carotenoid availability may thus be reflected in yolk concentrations. To assess whether yolk carotenoid concentrations or carotenoid profiles show any large-scale geographical trends or differences among habitats, we collected yolk samples from 16 European populations of the pied flycatcher, Ficedula hypoleuca. We found that the concentrations and proportions of lutein and some other xanthophylls in the egg yolks decreased from Central Europe northwards. The most southern population (which is also the one found at the highest altitude) also showed relatively low carotenoid levels. Concentrations of β-carotene and zeaxanthin did not show any obvious geographical gradients. Egg yolks also contained proportionally more lutein and other xanthophylls in deciduous than in mixed or coniferous habitats. We suggest that latitudinal gradients in lutein and xanthophylls reflect the lower availability of lutein-rich food items in the northern F. hypoleuca populations and in montane southern populations, which start egg-laying earlier relative to tree phenology than the Central European populations. Similarly, among-habitat variation is likely to reflect the better availability of lutein-rich food in deciduous forests. Our study is the first to indicate that the concentration and profile of yolk carotenoids may show large-scale spatial variation among populations in different parts of the species' geographical range. Further studies are needed to test the fitness effects of this geographical variation.

Show MeSH
Related in: MedlinePlus